454 Higher Engineering Mathematics
47.4 Further worked problems on
homogeneous first order
differential equations
Problem 3. Solve the equation:
7 x(x−y)dy= 2 (x^2 + 6 xy− 5 y^2 )dx
given thatx=1wheny=0.Using the procedure of section 47.2:(i) Rearranging gives:dy
dx=2 x^2 + 12 xy− 10 y^2
7 x^2 − 7 xy
which is homogeneous inxandysince each of
the terms on the right hand side is of degree 2.(ii) Lety=vxthendy
dx=v+xdv
dx(iii) Substituting foryanddy
dxgives:v+x
dv
dx=
2 x^2 + 12 x(vx)− 10 (vx)^2
7 x^2 − 7 x(vx)=2 + 12 v− 10 v^2
7 − 7 v
(iv) Separating the variables gives:xdv
dx=2 + 12 v− 10 v^2
7 − 7 v−v=( 2 + 12 v− 10 v^2 )−v( 7 − 7 v)
7 − 7 v=2 + 5 v− 3 v^2
7 − 7 vHence,7 − 7 v
2 + 5 v− 3 v^2dv=dx
xIntegrating both sides gives:
∫ (
7 − 7 v
2 + 5 v− 3 v^2)
dv=∫
1
xdxResolving7 − 7 v
2 + 5 v− 3 v^2into partial fractionsgives:4
( 1 + 3 v)−1
( 2 −v)(see chapter 2)Hence,∫ (
4
( 1 + 3 v)−1
( 2 −v))
dv=∫
1
xdxi.e.4
3ln( 1 + 3 v)+ln( 2 −v)=lnx+c(v) Replacingvbyy
xgives:4
3ln(
1 +3 y
x)
+ln(
2 −y
x)
=ln+cor4
3ln(
x+ 3 y
x)
+ln(
2 x−y
x)
=ln+cWhenx= 1 ,y=0, thus:4
3ln1+ln2=ln1+c
from which,c=ln 2
Hence, the particular solution is:
4
3ln(
x+ 3 y
x)
+ln(
2 x−y
x)
=ln+ln2i.e. ln(
x+ 3 y
x)^43 (
2 x−y
x)
=ln( 2 x)from the laws of logarithmsi.e.(
x+ 3 y
x) 43 (
2 x−y
x)
= 2 xProblem 4. Show that the solution of the
differential equation:x^2 − 3 y^2 + 2 xydy
dx=0is:
y=x√
( 8 x+ 1 ), given thaty=3whenx=1.Using the procedure of section 47.2:
(i) Rearranging gives:2 xydy
dx= 3 y^2 −x^2 anddy
dx=3 y^2 −x^2
2 xy(ii) Lety=vxthendy
dx=v+xdv
dx(iii) Substituting foryanddy
dxgives:v+xdv
dx=3 (vx)^2 −x^2
2 x(vx)=3 v^2 − 1
2 v
(iv) Separating the variables gives:xdv
dx=3 v^2 − 1
2 v−v=3 v^2 − 1 − 2 v^2
2 v=v^2 − 1
2 vHence,2 v
v^2 − 1dv=1
xdxIntegrating both sides gives:
∫
2 v
v^2 − 1dv=∫
1
xdxi.e. ln(v^2 − 1 )=lnx+c