458 Higher Engineering Mathematics
(iv) Substituting in equation (3) gives:yex=∫
ex(x)dx (4)(v)∫
ex(x)dx is determined using integration by
parts (see Chapter 43).
∫
xexdx=xex−ex+cHence from equation (4): yex=xex−ex+c,
which is the general solution.
Whenx=0, y=2 thus 2e^0 = 0 −e^0 +c, from
which,c=3.
Hence the particular solution is:yex=xex−ex+ 3 ory=x− 1 +3e−xNow try the following exerciseExercise 182 Further problemson linear
first order differential equations
Solve the following differential equations.- x
dy
dx= 3 −y[
y= 3 +c
x]2.dy
dx=x( 1 − 2 y)[
y=^12 +ce−x2 ]- t
dy
dt− 5 t=−y[
y=5 t
2+c
t]- x
(
dy
dx+ 1)
=x^3 − 2 y,givenx=1wheny= 3[
y=x^3
5−x
3+47
15 x^2]5.1
xdy
dx+y= 1[
y= 1 +ce−x(^2) / 2 ]
6.
dy
dx
+x= 2 y
[
y=
x
2
- 1
4
+ce^2 x
]
48.4 Further worked problems on
linear first order differential
equations
Problem 4. Solve the differential equation
dy
dθ=secθ+ytanθgiven the boundary conditions
y=1whenθ=0.Using the procedure of Section 48.2:(i) Rearranging givesdy
dθ−(tanθ)y=secθ,whichisof the form
dy
dθ+Py=QwhereP=−tanθand
Q=secθ.(ii)∫
Pdx=∫
−tanθdθ=−ln(secθ)=ln(secθ)−^1 =ln(cosθ).(iii) Integrating factor e∫
Pdθ=eln(cosθ)=cosθ
(from the definition of a logarithm).(iv) Substituting in equation (3) gives:ycosθ=∫
cosθ(secθ)dθi.e. ycosθ=∫
dθ(v) Integrating gives:ycosθ=θ+c, which is the
general solution. When θ=0, y=1, thus
1cos0= 0 +c, from which,c=1.
Hence the particular solution is:ycosθ=θ+ 1 ory=(θ+1)secθProblem 5.
(a) Find the general solution of the equation(x− 2 )dy
dx+3 (x− 1 )
(x+ 1 )y= 1(b) Given the boundary conditions thaty=5when
x=−1, find the particular solution of the
equation given in (a).(a) Using the procedure of Section 48.2:(i) Rearranging gives:dy
dx+3 (x− 1 )
(x+ 1 )(x− 2 )y=1
(x− 2 )which is of the form
dy
dx+Py=Q,whereP=3 (x− 1 )
(x+ 1 )(x− 2 )
andQ=1
(x− 2 )(ii)∫
Pdx=∫
3 (x− 1 )
(x+ 1 )(x− 2 )dx,whichisintegrated using partial fractions.