Linear first order differential equations 459
Let3 x− 3
(x+ 1 )(x− 2 )≡A
(x+ 1 )+B
(x− 2 )≡A(x− 2 )+B(x+ 1 )
(x+ 1 )(x− 2 )
from which, 3x− 3 =A(x− 2 )+B(x+ 1 )
Whenx=−1,− 6 =− 3 A,from which,A= 2Whenx=2,3 = 3 B,from which,B= 1Hence∫
3 x− 3
(x+ 1 )(x− 2 )dx=∫ [
2
x+ 1+1
x− 2]
dx=2ln(x+ 1 )+ln(x− 2 )=ln[(x+ 1 )^2 (x− 2 )](iii) Integrating factore∫Pdx=eln[(x+ 1 )^2 (x− 2 )]=(x+ 1 ) (^2) (x− 2 )
(iv) Substituting in equation (3) gives:
y(x+ 1 )^2 (x− 2 )
∫
(x+ 1 )^2 (x− 2 )
1
x− 2
dx
∫
(x+ 1 )^2 dx
(v) Hence the general solution is:
y(x+1)^2 (x−2)=^13 (x+1)^3 +c
(b) Whenx=−1,y=5 thus 5( 0 )(− 3 )= 0 +c, from
which,c=0.
Hencey(x+ 1 )^2 (x− 2 )=^13 (x+ 1 )^3
i.e.y=
(x+ 1 )^3
3 (x+ 1 )^2 (x− 2 )
and hencethe particular solution is
y=
(x+ 1 )
3 (x− 2 )
Now try the following exercise
Exercise 183 Further problemson linear
first order differential equations
In problems 1 and 2, solve the differential equa-
tions.
- cotx
dy
dx= 1 − 2 y,giveny=1whenx=π
4.[y=^12 +cos^2 x]- t
dθ
dt+sect(tsint+cost)θ=sect,givent=πwhenθ=1.[
θ=1
t(sint−πcost)]- Given the equation x
dy
dx=2
x+ 2−y showthat the particular solution isy=2
xln(x+ 2 ),
given the boundary conditions thatx=− 1
wheny=0.- Show that the solution of the differential
equation
dy
dx
− 2 (x+ 1 )^3 =4
(x+ 1 )yis y=(x+ 1 )^4 ln(x+ 1 )^2 , given that x= 0
wheny=0.- Show that the solution of the differential
equation
dy
dx
+ky=asinbxis given by:y=(
a
k^2 +b^2)
(ksinbx−bcosbx)+(
k^2 +b^2 +ab
k^2 +b^2)
e−kx,giveny=1whenx=0.- The equation
dv
dt=−(av+bt),whereaand
bare constants, represents an equation of
motion when a particle moves in a resisting
medium. Solve the equation forvgiven that
v=uwhent=0.
[
v=b
a^2−bt
a+(
u−b
a^2)
e−at]