Second order differential equations of the forma
d^2 ydx^2 +b
dy
dx+cy=^0479(d) Whent=0,y=3 hence 3=( 0 +B)e^0 ,i.e.B=3.Sincey=(At+B)e4
3 tthendy
dt=(At+B)(
4
3e4
3 t)
+Ae4
3 t,bythe
product rule.When t= 0 ,dy
dt= 3thus 3=( 0 +B)4
3e^0 +Ae^0i.e. 3=4
3B+Afrom which,A=−1, since
B=3.
Hence the particular solution isy=(−t+3)e4
3 tory=(3−t)e
4
3 tProblem 3. Solve the differential equation
d^2 y
dx^2+ 6dy
dx+ 13 y=0, given that whenx=0,y= 3and
dy
dx=7.Using the procedure of Section 50.2:
(a)d^2 y
dx^2+ 6dy
dx+ 13 y=0 in D-operator form is(D^2 +6D+ 13 )y=0, where D≡d
dx
(b) Substitutingmfor D gives the auxiliary equation
m^2 + 6 m+ 13 =0.Using the quadratic formula:m=− 6 ±√
[( 6 )^2 − 4 ( 1 )( 13 )]
2 ( 1 )=− 6 ±√
(− 16 )
2i.e.m=− 6 ±j 4
2
=− 3 ±j 2(c) Since the roots are complex,the general solu-
tion isy=e−^3 x(Acos 2x+Bsin2x)(d) Whenx=0,y=3, hence
3 =e^0 (Acos 0+Bsin0),i.e.A=3.
Sincey=e−^3 x(Acos 2x+Bsin2x)thendy
dx=e−^3 x(− 2 Asin 2x+ 2 Bcos2x)−3e−^3 x(Acos 2x+Bsin2x),
by the product rule,
=e−^3 x[( 2 B− 3 A)cos 2x
−( 2 A+ 3 B)sin2x]Whenx=0,dy
dx=7,hence 7=e^0 [( 2 B− 3 A)cos 0−( 2 A+ 3 B)sin0]
i.e. 7= 2 B− 3 A, from which,B=8, sinceA=3.
Hence the particular solution isy=e−^3 x(3cos2x+8sin2x)Since, from Chapter 17, page 165,
acosωt+bsinωt=Rsin(ωt+α),where
R=√
(a^2 +b^2 )andα=tan−^1a
bthen3cos2x+8sin2x=√
( 32 + 82 )sin( 2 x+tan−^138 )=√
73sin( 2 x+ 20. 56 ◦)=√
73sin( 2 x+ 0. 359 )Thus the particular solution may also be
expressed asy=√
73 e−3xsin( 2 x+0.359)Now try the following exerciseExercise 187 Further problemson
differential equations of the formad^2 y
dx^2+bdy
dx+cy= 0In Problems 1 to 3, determine the general solution
of the given differential equations.- 6
d^2 y
dt^2−dy
dt− 2 y= 0
[
y=Ae2
3 t+Be−
1
2 t]- 4
d^2 θ
dt^2+ 4dθ
dt+θ= 0
[
θ=(At+B)e−(^12) t]