480 Higher Engineering Mathematics
3.d^2 y
dx^2+ 2dy
dx+ 5 y= 0[y=e−x(Acos 2x+Bsin2x)]
InProblems4to9,findtheparticularsolutionofthe
givendifferential equationsfor the stated boundary
conditions.- 6
d^2 y
dx^2+ 5dy
dx− 6 y=0; whenx=0,y=5and
dy
dx=−1.[
y=3e2
3 x+2e−
3
2 x]- 4
d^2 y
dt^2− 5dy
dt+y=0; whent=0,y=1and
dy
dt=−2.[
y=4e1
4 t−3et]- (9D^2 +30D+ 25 )y=0, where D≡
d
dx;whenx=0,y=0anddy
dx=2.
[
y= 2 xe−5
3 x]7.d^2 x
dt^2− 6dx
dt+ 9 x=0; whent=0,x=2and
dx
dt=0. [x= 2 ( 1 − 3 t)e^3 t]8.d^2 y
dx^2+ 6dy
dx+ 13 y=0; whenx=0,y=4and
dy
dx
=0. [y=2e−^3 x(2cos2x+3sin2x)]- (4D^2 +20D+ 125 )θ=0, where D≡
d
dt;whent=0,θ=3anddθ
dt= 2 .5.[θ=e−^2.^5 t(3cos5t+2sin5t)]50.4 Further worked problems on
practical differential equations
of the forma
d^2 y
dx^2
+b
dy
dx
+cy= 0
Problem 4. The equation of motion of a body
oscillating on the end of a spring isd^2 x
dt^2+ 100 x= 0 ,wherexis the displacement in metres of thebody
from its equilibrium position after timetseconds.
Determinexin terms oftgiven that at timet=0,
x= 2 manddx
dt=0.An equation of the formd^2 x
dt^2+m^2 x=0isadiffer-
ential equation representing simple harmonic motion
(S.H.M.). Using the procedure of Section 50.2:(a)d^2 x
dt^2+ 100 x=0 in D-operator form is
(D^2 + 100 )x=0.(b) The auxiliary equation is m^2 + 100 =0, i.e.
m^2 =−100 andm=√
(− 100 ),i.e.m=±j10.(c) Since the roots are complex, the general solution
isx=e^0 (Acos 10t+Bsin10t),
i.e.x=(Acos 10t+Bsin10t)metres(d) Whent=0,x=2, thus 2=A
dx
dt=− 10 Asin10t+ 10 Bcos10tWhent=0,dx
dt= 0thus 0=− 10 Asin0+ 10 Bcos0, i.e.B= 0
Hence the particular solution isx=2cos10tmetresProblem 5. Given the differential equation
d^2 V
dt^2=ω^2 V,whereωis a constant, show that its
solution may be expressed as:V=7coshωt+3sinhωtgiven the boundary conditions that whent=0,V=7anddV
dt= 3 ω.Using the procedure of Section 50.2:(a)d^2 V
dt^2=ω^2 V,i.e.d^2 V
dt^2−ω^2 V=0 in D-operatorform is(D^2 −ω^2 )v=0, where D≡d
dx.(b) The auxiliary equation is m^2 −ω^2 =0, from
which,m^2 =ω^2 andm=±ω.