Second order differential equations of the forma
d^2 ydx^2 +b
dy
dx+cy=^0481(c) Since the roots are real and different,the general
solution isV=Aeωt+Be−ωt(d) Whent=0,V=7 hence 7=A+B (1)
dV
dt=Aωeωt−Bωe−ωtWhen t= 0 ,dV
dt= 3 ω,thus 3ω=Aω−Bω,i.e. 3 =A−B (2)
From equations (1) and (2),A=5andB= 2
Hencethe particular solution isV=5eωt+2e−ωtSince sinhωt=^12 (eωt−e−ωt)and coshωt=^12 (eωt+e−ωt)then sinhωt+coshωt=eωtand coshωt−sinhωt=e−ωt from Chapter 5.Hence the particular solution may also be
written asV= 5 (sinhωt+coshωt)
+ 2 (coshωt−sinhωt)i.e.V=( 5 + 2 )coshωt+( 5 − 2 )sinhωti.e.V=7coshωt+3sinhωtProblem 6. The equationd^2 i
dt^2+R
Ldi
dt+1
LCi= 0represents a currentiflowing in an electrical circuit
containing resistanceR, inductanceLand
capacitanceCconnected in series. IfR=200ohms,
L= 0 .20 henry andC= 20 × 10 −^6 farads, solve the
equation forigiven the boundary conditions that
whent=0,i=0anddi
dt=100.Using the procedure of Section 50.2:(a)d^2 i
dt^2+R
Ldi
dt+1
LCi=0 in D-operator form is(
D^2 +R
LD+1
LC)
i=0whereD≡d
dt(b) The auxiliary equation ism^2 +R
Lm+1
LC= 0Hencem=−
R
L±√√
√
√[(
R
L) 2
− 4 ( 1 )(
1
LC)]2WhenR=200,L= 0 .20 andC= 20 × 10 −^6 ,thenm=−
200
0. 20±√√
√
√[(
200
0. 20) 2
−
4
( 0. 20 )( 20 × 10 −^6 )]2=
− 1000 ±√
0
2=− 500(c) Since the two roots are real and equal (i.e.− 500
twice, since for a second order differential equa-
tion there must be two solutions),the general
solution isi=(At+B)e−^500 t.
(d) Whent=0,i=0, henceB= 0
di
dt=(At+B)(−500e−^500 t)+(e−^500 t)(A),by the product ruleWhent=0,di
dt=100, thus 100=− 500 B+Ai.e.A=100, sinceB= 0
Hence the particular solution isi= 100 te−^500 tProblem 7. The oscillations of a heavily damped
pendulum satisfy the differential equation
d^2 x
dt^2+ 6dx
dt+ 8 x=0, wherexcm is the
displacement of the bob at timetseconds.
The initial displacement is equal to+4cmandthe
initial velocity(
i.e.dx
dt)
is 8cm/s. Solve the
equation forx.