Introduction to Laplace transforms 583
(a) f(t)= 1. From equation (1),
L{ 1 }=∫∞0e−st( 1 )dt=[
e−st
−s]∞0=−
1
s[e−s(∞)−e^0 ]=−
1
s[0−1]=1
s(provideds> 0 )(b) f(t)=k. From equation (2),
L{k}=kL{ 1 }HenceL{k}=k(
1
s)
=k
s,from (a) above.(c) f(t)=eat(whereais a real constant=0).
From equation (1),
L{eat}=∫∞0e−st(eat)dt=∫∞0e−(s−a)tdt,from the laws of indices,=[
e−(s−a)t
−(s−a)]∞0=1
−(s−a)( 0 − 1 )=1
s−a
(provided(s−a)> 0 ,i.e.s>a)(d) f(t)=cosat(where a is a real constant).
From equation (1),L{cosat}=∫∞0e−stcosatdt=[
e−st
s^2 +a^2(asinat−scosat)]∞0by integration by parts twice (see page 423),=[
e−s(∞)
s^2 +a^2(asina(∞)−scosa(∞))−e^0
s^2 +a^2(asin0−scos0)]=s
s^2 +a^2(provideds> 0 )(e) f(t)=t. From equation (1),
L{t}=∫∞0e−sttdt=[
te−st
−s−∫
e−st
−sdt]∞0=[
te−st
−s−e−st
s^2]∞0
by integration by parts,=[
∞e−s(∞)
−s−e−s(∞)
s^2]
−[
0 −e^0
s^2]=( 0 − 0 )−(
0 −1
s^2)since(∞× 0 )= 0 ,=1
s^2(provideds> 0 )(f) f(t)=tn(wheren=0, 1, 2, 3, ...).
By a similar method to (e) it may be shown
thatL{t^2 }=2
s^3andL{t^3 }=( 3 )( 2 )
s^4=3!
s^4.These
results can be extended tonbeing any positive
integer.
ThusL{tn}=
n!
sn+^1provideds> 0 )(g) f(t)=sinhat. From Chapter 5,
sinhat=1
2(eat−e−at). Hence,L{sinhat}=L{
1
2eat−1
2e−at}=1
2L{eat}−1
2L{e−at}from equations (2) and (3),=1
2[
1
s−a]
−1
2[
1
s+a]from (c) above,=1
2[
1
s−a−1
s+a]=a
s^2 −a^2(provideds>a)A list of elementary standard Laplace transforms are
summarized in Table 61.1.61.5 Worked problems on standard
Laplace transforms
Problem 1. Using a standard list of Laplace
transforms determine the following:
(a)L{
1 + 2 t−1
3t^4}
(b)L{5e^2 t−3e−t}.