Introduction to Laplace transforms 585
=1
s^2 +a^2[( 0 )− 1 ( 0 −a)]=a
s^2 +a^2(provideds> 0 )(b) From equation (1),
L{t^2 }=∫∞0e−stt^2 dt=[
t^2 e−st
−s−2 te−st
s^2−2e−st
s^3]∞0
by integration by parts twice,=[
( 0 − 0 − 0 )−(
0 − 0 −2
s^3)]=2
s^3(provideds> 0 )(c) From equation (1),
L{coshat}=L{
1
2(eat+e−at)}
,from Chapter 5=1
2L{eat}+1
2L{e−at},equations (2) and (3)=1
2(
1
s−a)
+1
2(
1
s−(−a))from (iii) of Table 61.1=1
2[
1
s−a+1
s+a]=1
2[
(s+a)+(s−a)
(s−a)(s+a)]=s
s^2 −a^2(provideds>a)Problem 4. Determine the Laplace transforms of:
(a) sin^2 t (b) cosh^23 x.(a) Since cos2t= 1 −2sin^2 tthensin^2 t=1
2( 1 −cos2t). Hence,L{sin^2 t}=L{
1
2( 1 −cos2t)}=1
2L{ 1 }−1
2L{cos2t}=1
2(
1
s)
−1
2(
s
s^2 + 22)from (i) and (v) of Table 61.1=(s^2 + 4 )−s^2
2 s(s^2 + 4 )=4
2 s(s^2 + 4 )=
2
s(s^2 +4)(b) Since cosh 2x=2cosh^2 x−1then
cosh^2 x=1
2( 1 +cosh2x)from Chapter 5.Hence cosh^23 x=1
2( 1 +cosh 6x)ThusL{cosh^23 x}=L{
1
2( 1 +cosh 6x)}=1
2L{ 1 }+1
2L{cosh6x}=1
2(
1
s)
+1
2(
s
s^2 − 62)=2 s^2 − 36
2 s(s^2 − 36 )=s^2 − 18
s(s^2 −36)Problem 5. Find the Laplace transform of
3sin(ωt+α),whereωandαare constants.Using the compound angle formula for sin(A+B),
from Chapter 17, sin(ωt+α)may be expanded to
(sinωtcosα+cosωtsinα). Hence,
L{3sin(ωt+α)}
=L{ 3 (sinωtcosα+cosωtsinα)}
=3cosαL{sinωt}+3sinαL{cosωt},
sinceαis a constant=3cosα(
ω
s^2 +ω^2)
+3sinα(
s
s^2 +ω^2)from (iv) and (v) of Table 61.1=3
(s^2 +ω^2 )(ωcosα+ssinα)Now try the following exerciseExercise 219 Further problems on an
introduction to Laplace transformsDetermine the Laplace transforms in Problems
1to9.