Chapter 62
Properties of Laplace
transforms
62.1 The Laplace transform ofeatf(t)
FromChapter61,thedefinitionoftheLaplacetransform
off(t)is:
L{f(t)}=∫∞0e−stf(t)dt (1)ThusL{eatf(t)}=∫∞0e−st(eatf(t))dt=∫∞0e−(s−a)f(t)dt (2)(where a is a real constant)Hence the substitution of(s−a)forsin the transform
shown in equation (1) corresponds to the multiplication
of the original functionf(t)by eat. This is known as a
shift theorem.
62.2 Laplace transforms of the form
eatf(t)
From equation (2), Laplace transforms of the form
eatf(t)may be deduced. For example:
(i) L{eattn}SinceL{tn}=n!
sn+^1from (viii) of Table 61.1,
page 584.thenL{eattn}=n!
(s−a)n+^1from equation (2)
above (provideds>a).(ii) L{eatsinωt}SinceL{sinωt}=ω
s^2 +ω^2from (iv) of Table
61.1, page 584.then L{eatsinωt}=ω
(s−a)^2 +ω^2from equa-
tion (2) (provideds>a).
(iii) L{eatcoshωt}SinceL{coshωt}=s
s^2 −ω^2from (ix) of Table
61.1, page 584.thenL{eatcoshωt}=s−a
(s−a)^2 −ω^2from equa-
tion (2) (provideds>a).
A summary of Laplace transforms of the form
eatf(t)is shown in Table 62.1.Table 62.1Laplace transforms of the form
eatf(t)Function eatf(t) Laplace transform
(ais a real constant) L{eatf(t)}(i) eattnn!
(s−a)n+^1
(ii) eatsinωtω
(s−a)^2 +ω^2
(iii) eatcosωts−a
(s−a)^2 +ω^2
(iv) eatsinhωtω
(s−a)^2 −ω^2
(v) eatcoshωts−a
(s−a)^2 −ω^2