Properties of Laplace transforms 589
=3
2 s+ 1−6 s+ 3
4 s^2 + 4 s+ 17=3 ( 4 s^2 + 4 s+ 17 )−( 6 s+ 3 )( 2 s+ 1 )
( 2 s+ 1 )( 4 s^2 + 4 s+ 17 )=12 s^2 + 12 s+ 51 − 12 s^2 − 6 s− 6 s− 3
( 2 s+ 1 )( 4 s^2 + 4 s+ 17 )=48
(2s+1)(4s^2 + 4 s+17)Now try the following exercise
Exercise 220 Further problemson Laplace
transforms of the formeatf(t)
Determine theLaplace transforms of the following
functions:- (a) 2te^2 t(b)t^2 et
[
(a)
2
(s− 2 )^2(b)2
(s− 1 )^3]- (a) 4t^3 e−^2 t(b)
1
2t^4 e−^3 t
[
(a)24
(s+ 2 )^4(b)12
(s+ 3 )^5]- (a) etcost(b) 3e^2 tsin2t
[
(a)
s− 1
s^2 − 2 s+ 2(b)6
s^2 − 4 s+ 8]- (a) 5e−^2 tcos3t(b) 4e−^5 tsint
[
(a)
5 (s+ 2 )
s^2 + 4 s+ 13(b)4
s^2 + 10 s+ 26]- (a) 2etsin^2 t(b)
1
2e^3 tcos^2 t
⎡
⎢
⎢
⎣(a)1
s− 1−s− 1
s^2 − 2 s+ 5(b)1
4(
1
s− 3+s− 3
s^2 − 6 s+ 13)⎤
⎥
⎥
⎦- (a) etsinht(b) 3e^2 tcosh4t
[
(a)
1
s(s− 2 )
(b)
3 (s− 2 )
s^2 − 4 s− 12]- (a) 2e−tsinh3t(b)
1
4e−^3 tcosh 2t
[
(a)6
s^2 + 2 s− 8(b)s+ 3
4 (s^2 + 6 s+ 5 )]- (a) 2et(cos 3t−3sin3t)
(b) 3e−^2 t(sinh2t−2cosh2t)
[
(a)2 (s− 10 )
s^2 − 2 s+ 10(b)− 6 (s+ 1 )
s(s+ 4 )]62.3 The Laplace transforms of
derivatives
(a) First derivative
Let the first derivative of f(t)be f′(t)then, from
equation (1),L{f′(t)}=∫∞0e−stf′(t)dtFrom Chapter 43, when integrating by parts
∫
udv
dtdt=uv−∫
vdu
dtdtWhen evaluating∫∞
0 e−stf′(t)dt,letu=e−standdv
dt=f′(t)from which,
du
dt=−se−standv=∫
f′(t)dt=f(t)Hence∫∞0e−stf′(t)dt=[
e−stf(t)]∞
0 −∫∞0f(t)(−se−st)dt=[0−f( 0 )]+s∫∞0e−stf(t)dt=−f( 0 )+sL{f(t)}assuming e−stf(t)→0ast→∞,andf( 0 )isthevalue
off(t)att=0. Hence,L{f′(t)}=sL{f(t)}−f(0)or L{
dy
dx}
=sL{y}−y(0)⎫
⎬
⎭(3)wherey( 0 )is the value ofyatx=0.