602 Higher Engineering Mathematics
(i) L{
d^2 y
dx^2}
− 3 L{
dy
dx}
=L{ 9 }Hence [s^2 L{y}−sy( 0 )−y′( 0 )]−3[sL{y}−y( 0 )]=9
s(ii) y( 0 )=0andy′( 0 )= 0Hences^2 L{y}− 3 sL{y}=9
s(iii) Rearranging gives:(s^2 − 3 s)L{y}=9
si.e. L{y}=9
s(s^2 − 3 s)
=9
s^2 (s− 3 )(iv) y=L−^1{
9
s^2 (s− 3 )}9
s^2 (s− 3 )≡A
s+B
s^2+C
s− 3≡A(s)(s− 3 )+B(s− 3 )+Cs^2
s^2 (s− 3 )Hence 9≡A(s)(s− 3 )+B(s− 3 )+Cs^2.
Whens= 0 , 9 =− 3 B, from which,B=−3.
Whens= 3 , 9 = 9 C, from which,C=1.
Equatings^2 terms gives: 0=A+C, from which,
A=−1, sinceC=1. Hence,L−^1{
9
s^2 (s− 3 )}
=L−^1{
−1
s−3
s^2+1
s− 3}=− 1 − 3 x+e^3 x,from (i),(vi) and (iii) of Table 63.1.i.e.y=e^3 x− 3 x− 1Problem 4. Use Laplace transforms to solve the
differential equation:
d^2 y
dx^2− 7dy
dx+ 10 y=e^2 x+20, given that whenx=0,y=0anddy
dx=−1
3Using the procedure:(i) L{
d^2 y
dx^2}
− 7 L{
dy
dx}
+ 10 L{y}=L{e^2 x+ 20 }Hence [s^2 L{y}−sy( 0 )−y′( 0 )]−7[sL{y}−y( 0 )]+ 10 L{y}=1
s− 2+20
s(ii) y( 0 )=0andy′( 0 )=−1
3Hence s^2 L{y}− 0 −(
−1
3)
− 7 sL{y}+ 0+ 10 L{y}=21 s− 40
s(s− 2 )(iii) (s^2 − 7 s+ 10 )L{y}=21 s− 40
s(s− 2 )−1
3=3 ( 21 s− 40 )−s(s− 2 )
3 s(s− 2 )=−s^2 + 65 s− 120
3 s(s− 2 )Hence L{y}=−s^2 + 65 s− 120
3 s(s− 2 )(s^2 − 7 s+ 10 )=1
3[
−s^2 + 65 s− 120
s(s− 2 )(s− 2 )(s− 5 )]=1
3[
−s^2 + 65 s− 120
s(s− 5 )(s− 2 )^2](iv) y=1
3L−^1{
−s^2 + 65 s− 120
s(s− 5 )(s− 2 )^2}−s^2 + 65 s− 120
s(s− 5 )(s− 2 )^2≡A
s+B
s− 5+C
s− 2+D
(s− 2 )^2≡(
A(s− 5 )(s− 2 )^2 +B(s)(s− 2 )^2
+C(s)(s− 5 )(s− 2 )+D(s)(s− 5 ))s(s− 5 )(s− 2 )^2
Hence
−s^2 + 65 s− 120≡A(s− 5 )(s− 2 )^2 +B(s)(s− 2 )^2+C(s)(s− 5 )(s− 2 )+D(s)(s− 5 )