The solution of differential equations using Laplace transforms 603
Whens= 0 ,− 120 =− 20 A, from which,A=6.
Whens= 5 , 180 = 45 B, from which,B=4.
Whens= 2 , 6 =− 6 D, from which,D=−1.Equatings^3 terms gives: 0=A+B+C, from
which,C=−10.Hence1
3L−^1{
−s^2 + 65 s− 120
s(s− 5 )(s− 2 )^2}=1
3L−^1{
6
s+4
s− 5−10
s− 2−1
(s− 2 )^2}=1
3[6+4e^5 x−10e^2 x−xe^2 x]Thusy= 2 +4
3e^5 x−10
3e^2 x−x
3e^2 xProblem 5. The current flowing in an electrical
circuit is given by the differential equation
Ri+L(di/dt)=E,whereE,LandRare
constants. Use Laplace transforms to solve the
equation for currentigiven that whent=0,
i=0.Using the procedure:
(i) L{Ri}+L{
Ldi
dt}
=L{E}i.e. RL{i}+L[sL{i}−i( 0 )]=E
s(ii) i( 0 )=0, henceRL{i}+LsL{i}=E
s(iii) Rearranging gives:
(R+Ls)L{i}=E
si.e. L{i}=E
s(R+Ls)(iv) i=L−^1{
E
s(R+Ls)}E
s(R+Ls)≡
A
s+
B
R+Ls≡A(R+Ls)+Bs
s(R+Ls)Hence E=A(R+Ls)+Bs
When s= 0 ,E=AR,from which, A=
E
R
When s=−R
L,E=B(
−R
L)from which, B=−EL
RHenceL−^1{
E
s(R+Ls)}=L−^1{
E/R
s+−EL/R
R+Ls}=L−^1{
E
Rs−EL
R(R+Ls)}=L−^1⎧
⎪⎨⎪⎩E
R(
1
s)
−E
R⎛
⎜
⎝1
R
L+s⎞
⎟
⎠⎫
⎪⎬⎪⎭=E
RL−^1⎧
⎪⎪
⎨
⎪⎪
⎩1
s−1
(
s+R
L)⎫
⎪⎪
⎬
⎪⎪
⎭Hencecurrenti=E
R(
1 −e−Rt
L)Now try the following exerciseExercise 226 Further problemson solving
differential equations using Laplace
transforms- A first order differential equation involving
currentiin a seriesR−Lcircuit is given by:
di
dt
+ 5 i=E
2andi=0 at timet=0.Use Laplace transforms to solve for i
when (a) E=20 (b) E=40e−^3 t and
(c)E=50sin5t.
⎡
⎢
⎢
⎣(a)i= 2 ( 1 −e−^5 t)
(b)i= 10 (e−^3 t−e−^5 t)(c)i=5
2(e−^5 t−cos5t+sin5t)⎤
⎥
⎥
⎦