The solution of simultaneous differential equations using Laplace transforms 607
Problem 2. Solve the following pair of
simultaneous differential equations3dx
dt− 5dy
dt+ 2 x= 62dy
dt−dx
dt−y=− 1given that att=0,x=8andy=3.Using the above procedure:
(i) 3 L{
dx
dt}
− 5 L{
dy
dt}
+ 2 L{x}=L{ 6 } (1)2 L{
dy
dt}
−L{
dx
dt}
−L{y}=L{− 1 } (2)Equation (1) becomes:
3[sL{x}−x( 0 )]−5[sL{y}−y( 0 )]+ 2 L{x}=6
s
from equation (3), page 589, and Table 61.1,
page 584.i.e. 3 sL{x}− 3 x( 0 )− 5 sL{y}+ 5 y( 0 )+ 2 L{x}=6
s
i.e.( 3 s+ 2 )L{x}− 3 x( 0 )− 5 sL{y}+ 5 y( 0 )=6
s(1′)Equation (2) becomes:2[sL{y}−y( 0 )]−[sL{x}−x( 0 )]−L{y}=−1
s
from equation (3), page 589, and Table 61.1,
page 584,i.e. 2 sL{y}− 2 y( 0 )−sL{x}+x( 0 )−L{y}=−1
s
i.e.( 2 s− 1 )L{y}− 2 y( 0 )−sL{x}+x( 0 )=−1
s(2′)(ii) x( 0 )=8andy( 0 )=3, hence equation (1′)
becomes
( 3 s+ 2 )L{x}− 3 ( 8 )− 5 sL{y}
+ 5 ( 3 )=6
s(1′′)and equation (2′) becomes( 2 s− 1 )L{y}− 2 ( 3 )−sL{x}+ 8 =−1
s(2′′)i.e.( 3 s+ 2 )L{x}− 5 sL{y}=6
s+9(1′′)( 3 s+ 2 )L{x}− 5 sL{y}=6
s+ 9 ( 1 ′′′)−sL{x}+( 2 s− 1 )L{y}=−1
s− 2 ( 2 ′′′)⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎭(A)(iii) s×equation (1′′′)and( 3 s+ 2 )×equation (2′′′)
gives:s( 3 s+ 2 )L{x}− 5 s^2 L{y}=s(
6
s+ 9)
(3)−s( 3 s+ 2 )L{x}+( 3 s+ 2 )( 2 s− 1 )L{y}=( 3 s+ 2 )(
−1
s− 2)
(4)i.e. s( 3 s+ 2 )L{x}− 5 s^2 L{y}= 6 + 9 s (3′)−s( 3 s+ 2 )L{x}+( 6 s^2 +s− 2 )L{y}=− 6 s−2
s−7(4′)Adding equations (3′)and(4′)gives:(s^2 +s− 2 )L{y}=− 1 + 3 s−2
s=−s+ 3 s^2 − 2
sfrom which, L{y}=3 s^2 −s− 2
s(s^2 +s− 2 )
Using partial fractions3 s^2 −s− 2
s(s^2 +s− 2 )≡A
s+B
(s+ 2 )+C
(s− 1 )=A(s+ 2 )(s− 1 )+Bs(s− 1 )+Cs(s+ 2 )
s(s+ 2 )(s− 1 )