608 Higher Engineering Mathematics
i.e. 3 s^2 −s− 2 =A(s+ 2 )(s− 1 )
+Bs(s− 1 )+Cs(s+ 2 )When s=0,− 2 =− 2 A, hence A= 1When s=1, 0= 3 C, hence C= 0When s=−2, 12= 6 B, hence B= 2Thus L{y}=3 s^2 −s− 2
s(s^2 +s− 2 )=1
s+2
(s+ 2 )(iv) Hence y=L−^1{
1
s+2
s+ 2}
= 1 +2e−^2 tReturning to equations (A) to determineL{x}and
hencex:
( 2 s− 1 )×equation (1′′′)and5s×( 2 ′′′)gives:( 2 s− 1 )( 3 s+ 2 )L{x}− 5 s( 2 s− 1 )L{y}=( 2 s− 1 )(
6
s+ 9)
(5)and −s( 5 s)L{x}+ 5 s( 2 s− 1 )L{y}= 5 s(
−1
s− 2)
(6)i.e.( 6 s^2 +s− 2 )L{x}− 5 s( 2 s− 1 )L{y}= 12 + 18 s−6
s−9( 5 ′)and − 5 s^2 L{x}+ 5 s( 2 s− 1 )L{y}=− 5 − 10 s (6′)Adding equations (5′)and(6′)gives:(s^2 +s− 2 )L{x}=− 2 + 8 s−6
s=− 2 s+ 8 s^2 − 6
sfrom which, L{x}=8 s^2 − 2 s− 6
s(s^2 +s− 2 )=8 s^2 − 2 s− 6
s(s+ 2 )(s− 1 )Using partial fractions8 s^2 − 2 s− 6
s(s+ 2 )(s− 1 )≡A
s+B
(s+ 2 )+C
(s− 1 )=A(s+ 2 )(s− 1 )+Bs(s− 1 )+Cs(s+ 2 )
s(s+ 2 )(s− 1 )i.e. 8 s^2 − 2 s− 6 =A(s+ 2 )(s− 1 )+Bs(s− 1 )+Cs(s+ 2 )When s=0,− 6 =− 2 A, hence A= 3When s=1, 0= 3 C, hence C= 0When s=−2, 30= 6 B, hence B= 5Thus L{x}=8 s^2 − 2 s− 6
s(s+ 2 )(s− 1 )=3
s+5
(s+ 2 )Hence x=L−^1{
3
s+5
s+ 2}
= 3 +5e−^2 tTherefore the solutions of the given simultaneous dif-
ferential equations arey= 1 +2e−^2 t and x= 3 +5e−^2 t(These solutions may be checked by substituting the
expressions forxandyinto the original equations.)Problem 3. Solve the following pair of
simultaneous differential equationsd^2 x
dt^2−x=yd^2 y
dt^2+y=−xgiven that att=0,x=2,y=−1,dx
dt= 0anddy
dt=0.