620 Higher Engineering Mathematics
and phase angle,α=tan−^1⎛
⎜
⎝− 2
32 π
1
3⎞
⎟
⎠=− 11. 98 ◦ or − 0 .209radiansHence the third harmonic is given by
0 .341 sin(3x− 0 .209)
(c) Whenx=0,f(x)=0 (see Fig. 67.3).Hence, from the Fourier series:0 =π
4−2
π(
cos0+1
32cos0+1
52cos0+···)
+( 0 )i.e. −π
4=−2
π(
1 +1
32+1
52+1
72+···)Henceπ^2
8= 1 +1
32+1
52+1
72+···Problem 5. Deduce the Fourier series for the
functionf(θ )=θ^2 in the range 0 to 2π.f(θ )=θ^2 is shown in Fig. 67.4 in the range 0 to 2π.
The function is not periodic but is constructed outside
of this range so that it is periodicof period 2π,asshown
by the broken lines.f() f() 5 224 22 0 2 4 4 ^2Figure 67.4For a Fourier series:f(x)=a 0 +∑∞n= 1(ancosnx+bnsinnx)a 0 =1
2 π∫ 2 π0f(θ )dθ=1
2 π∫ 2 π0θ^2 dθ=1
2 π[
θ^3
3] 2 π0=1
2 π[
8 π^3
3− 0]
=4 π^2
3an=1
π∫ 2 π0f(θ )cosnθdθ=1
π∫ 2 π0θ^2 cosnθdθ=1
π[
θ^2 sinnθ
n+2 θcosnθ
n^2−2sinnθ
n^3] 2 π0
by parts=1
π[(
0 +4 πcos2πn
n^2− 0)
−( 0 )]=4
n^2cos2πn=4
n^2whenn= 1 , 2 , 3 ,...Hencea 1 =4
12,a 2 =4
22,a 3 =4
32and so onbn=1
π∫ 2 π0f(θ )sinnθdθ=1
π∫ 2 π0θ^2 sinnθdθ=1
π[
−θ^2 cosnθ
n+2 θsinnθ
n^2+2cosnθ
n^3] 2 π0
by parts=1
π[(
− 4 π^2 cos2πn
n+ 0 +2cos2πn
n^3)−(
0 + 0 +2cos0
n^3)]=1
π[
− 4 π^2
n+2
n^3−2
n^3]
=− 4 π
nHenceb 1 =− 4 π
1,b 2 =− 4 π
2,b 3 =− 4 π
3, and so on.Thus f(θ )=θ^2=4 π^2
3+∑∞n= 1(
4
n^2cosnθ−4 π
nsinnθ)i.e. θ^2 =
4 π^2
3+ 4(
cosθ+1
22cos2θ+1
32cos3θ+···)− 4 π(
sinθ+1
2sin2θ+1
3sin3θ+···)for values ofθbetween 0 and 2π.Problem 6. In the Fourier series of Problem 5, let
θ=πand determine a series forπ^2
12