650 Higher Engineering Mathematics
thef(x) axis. Thus equation (15) could have been used,
giving:cn=2
L∫ L
2
0f(x)cos(
2 πnx
L)
dx=2
4∫ 20f(x)cos(
2 πnx
4)
dx=1
2{∫ 105cos(πnx
2)
dx+∫ 210dx}=5
2⎡
⎢
⎣sin(πnx
2)πn
2⎤
⎥
⎦10=5
2(
2
πn)(
sinnπ
2− 0)=5
πnsinnπ
2which is the same answer as in Problem 1; how-
ever, a knowledge of even functions has produced the
coefficient more quickly.Problem 4. Obtain the Fourier series, in complex
form, for the square wave shown in Figure 71.4.2f(x)0 x222 ^2 ^3 Figure 71.4Method A
The square wave shown in Figure 71.4 is anodd
functionsince it is symmetrical about the origin.
The period of the waveform,L= 2 π.
Thus, using equation (16):cn=−j2
L∫ L
2
0f(x)sin(
2 πnx
L)
dx=−j2
2 π∫π02sin(
2 πnx
2 π)
dx=−j2
π∫π0sinnxdx=−j2
π[
−cosnx
n]π0=−j2
πn(
(−cosπn)−(−cos0))i.e. cn=−j2
πn[1−cosπn] (17)Method B
If it hadnotbeen noted that the function was odd,
equation (12) would have been used, i.e.cn=1
L∫ L
2
−L 2f(x)e−j2 πLnx
dx=1
2 π∫π−πf(x)e−j2 πnx
2 π dx=1
2 π{∫ 0−π−2e−jnxdx+∫π02e−jnxdx}=1
2 π{[
−2e−jnx
−jn] 0−π+[
2e−jnx
−jn]π0}=1
2 π(
2
jn){[
e−jnx] 0
−π−[
e−jnx]π
0}=1
2 π(
2
jn){[
e^0 −e+jnπ]
−[
e−jnπ−e^0]}=1
jπn{
1 −ejnπ−e−jnπ+ 1}=1
jnπ{
2 − 2(
ejnπ+e−jnπ
2)}by rearranging=2
jnπ{
1 −(
ejnπ+e−jnπ
2)}=2
jnπ{ 1 −cosnπ} from equation (3)=−j 2
−j(jnπ){ 1 −cosnπ}by multiplying top and bottom by−ji.e. cn=−j2
nπ(1−cosnπ) ( 17 )It is clear that method A is by far the shorter of the two
methods.