The complex or exponential form of a Fourier series 651
From equation (11), the complex Fourier series is
given by:
f(x)=∑∞n=−∞cnej2 πnx
L=∑∞n=−∞−j2
nπ(1−cosnπ)ejnx (18)Problem 5. Show that the complex Fourier series
obtained in problem 4 above is equivalent tof(x)=8
π(
sinx+1
3sin3x+1
5sin5x+1
7sin7x+···)(which was the Fourier series obtained in terms of
sines and cosines in Problem 3 on page 625).From equation (17) above,cn=−j
2
nπ( 1 −cosnπ)Whenn=1,
c 1 =−j2
( 1 )π( 1 −cosπ)=−j2
π(
1 −(− 1 ))
=−j 4
πWhenn=2,
c 2 =−j2
2 π( 1 −cos2π)= 0 ;in fact, all even values ofcnwill be zero.
Whenn=3,
c 3 =−j2
3 π( 1 −cos3π)=−j2
3 π( 1 −(− 1 ))=−j 4
3 πBy similar reasoning,
c 5 =−j 4
5 π,c 7 =−j 4
7 π,andsoon.Whenn=−1,
c− 1 =−j2
(− 1 )π( 1 −cos(−π))=+j2
π( 1 −(− 1 ))=+j 4
πWhenn=−3,
c− 3 =−j2
(− 3 )π( 1 −cos(− 3 π))=+j2
3 π( 1 −(− 1 ))=+j 4
3 πBy similar reasoning,c− 5 =+j 4
5 π,c− 7 =+j 4
7 π,andsoon.Since the waveform is odd,c 0 =a 0 = 0.
From equation (18) above,f(x)=∑∞n=−∞−j2
nπ( 1 −cosnπ)ejnxHence,f(x)=−j 4
πejx−j 4
3 πej^3 x−j 4
5 πej^5 x−j 4
7 πej^7 x−···+j 4
πe−jx+j 4
3 πe−j^3 x+j 4
5 πe−j^5 x+j 4
7 πe−j^7 x+···=(
−j 4
πejx+j 4
πe−jx)+(
−j 4
3 πe^3 x+j 4
3 πe−^3 x)+(
−j 4
5 πe^5 x+j 4
5 πe−^5 x)
+···=−j 4
π(
ejx−e−jx)
−j 4
3 π(
e^3 x−e−^3 x)−j 4
5 π(
e^5 x−e−^5 x)
+···=4
jπ(
ejx−e−jx)
+4
j 3 π(
e^3 x−e−^3 x)+4
j 5 π(
e^5 x−e−^5 x)
+···by multiplying top and bottom byj=8
π(
ejx−e−jx
2 j)
+8
3 π(
ej^3 x−e−j^3
2 j)+8
5 π(
ej^5 x−e−j^5 x
2 j)
+···by rearranging=8
πsinx+8
3 πsin3x+8
3 xsin5x+···from equation (4), page 644