Essential formulae 661
Triangle formulae:
With reference to Fig. FA2:Sine rule
a
sinA=b
sinB=c
sinCCosine rule a^2 =b^2 +c^2 − 2 bccosA
AB CcabFigure FA2Area of any triangle
(i)^12 ×base×perpendicular height(ii)^12 absinCor^12 acsinBor^12 bcsinA(iii)√
[s(s−a)(s−b)(s−c)]wheres=a+b+c
2Compound angle formulae:
sin(A±B)=sinAcosB±cosAsinBcos(A±B)=cosAcosB∓sinAsinBtan(A±B)=tanA±tanB
1 ∓tanAtanB
IfRsin(ωt+α)=asinωt+bcosωt,
then a=Rcosα, b=Rsinα,R=√
(a^2 +b^2 )andα=tan−^1
b
aDouble angles:
sin2A=2sinAcosAcos2A=cos^2 A−sin^2 A=2cos^2 A− 1= 1 −2sin^2 Atan2A=2tanA
1 −tan^2 AProducts of sines and cosines into sums or
differences:
sinAcosB=^12 [sin(A+B)+sin(A−B)]cosAsinB=^12 [sin(A+B)−sin(A−B)]cosAcosB=^12 [cos(A+B)+cos(A−B)]sinAsinB=−^12 [cos(A+B)−cos(A−B)]Sums or differences of sines and cosines
into products:
sinx+siny=2sin(
x+y
2)
cos(
x−y
2)sinx−siny=2cos(
x+y
2)
sin(
x−y
2)cosx+cosy=2cos(
x+y
2)
cos(
x−y
2)cosx−cosy=−2sin(
x+y
2)
sin(
x−y
2)For ageneral sinusoidal function
y=Asin(ωt±α), then:A=amplitude
ω=angular velocity= 2 πfrad/s2 π
ω=periodic timeTsecondsω
2 π=frequency,fhertzα=angle of lead or lag (compared with
y=Asinωt)Cartesian and polar co-ordinates:
If co-ordinate (x,y)=(r,θ)then r=√
x^2 +y^2 and
θ=tan−^1y
x
If co-ordinate (r,θ)=(x,y) then x=rcosθ and
y=rsinθ.