662 Higher Engineering Mathematics
The circle:
With reference to Fig. FA3.
Area=πr^2 Circumference= 2 πr
πradians= 180 ◦r srFigure FA3For sector of circle:
s=rθ (θin rad)
shaded area=^12 r^2 θ (θin rad)Equation of a circle, centre at (a, b), radius r:(x−a)^2 +(y−b)^2 =r^2Linear and angular velocity:
Ifv=linear velocity (m/s),s=displacement (m),
t=time (s),n=speed of revolution (rev/s),
θ=angle (rad),ω=angular velocity (rad/s),
r=radius of circle (m) then:v=s
tω=θ
t= 2 πn v=ωrcentripetal force=mv^2
rwherem=mass of rotating object.Graphs
Equations of functions:
Equation of a straight line: y=mx+c
Equation of a parabola: y=ax^2 +bx+c
Circle, centre (a, b), radius r:
(x−a)^2 +(y−b)^2 =r^2Equation of an ellipse, centre at origin, semi-axes aand b:x^2
a^2+y^2
b^2= 1Equation of a hyperbola:x^2
a^2−y^2
b^2= 1Equation of a rectangular hyperbola: xy=c^2Irregular areas:
Trapezoidal ruleArea≈(
width of
interval)[
1
2(
first+last
ordinates)+(
sum of remaining
ordinates)]Mid-ordinate ruleArea≈(
width of
interval)(
sum of
mid-ordinates)Simpson’s ruleArea≈1
3(
width of
interval)[(
first+last
ordinate)+ 4(
sum of even
ordinates)+ 2(
sum of remaining
odd ordinates)]Vector Geometry
Ifa=a 1 i+a 2 j+a 3 kandb=b 1 i+b 2 j+b 3 ka·b=a 1 b 1 +a 2 b 2 +a 3 b 3|a|=√
a^21 +a 22 +a 32 cosθ=a·b
|a||b|a×b=∣ ∣ ∣ ∣ ∣ ∣
ijk
a 1 a 2 a 3
b 1 b 2 b 3∣ ∣ ∣ ∣ ∣ ∣|a×b|=√
[(a·a)(b·b)−(a·b)^2 ]