664 Higher Engineering Mathematics
yorf(x)dy
dxorf′(x)cos−^1 f(x)−f′(x)
√
1 −[f(x)]^2tan−^1x
aa
a^2 +x^2tan−^1 f(x)f′(x)
1 +[f(x)]^2sec−^1x
aa
x√
x^2 −a^2sec−^1 f(x)f′(x)
f(x)√
[f(x)]^2 − 1cosec−^1x
a−a
x√
x^2 −a^2cosec−^1 f(x)−f′(x)
f(x)√
[f(x)]^2 − 1cot−^1x
a−a
a^2 +x^2cot−^1 f(x)−f′(x)
1 +[f(x)]^2sinh−^1x
a1
√
x^2 +a^2sinh−^1 f(x)f′(x)
√
[f(x)]^2 + 1cosh−^1x
a1
√
x^2 −a^2cosh−^1 f(x)f′(x)
√
[f(x)]^2 − 1tanh−^1x
aa
a^2 −x^2tanh−^1 f(x)f′(x)
1 −[f(x)]^2sech−^1x
a−a
x√
a^2 −x^2sech−^1 f(x)−f′(x)
f(x)√
1 −[f(x)]^2yorf(x)dy
dxorf′(x)cosech−^1x
a−a
x√
x^2 +a^2cosech−^1 f(x)−f′(x)
f(x)√
[f(x)]^2 + 1coth−^1x
aa
a^2 −x^2coth−^1 f(x)f′(x)
1 −[f(x)]^2Product rule:
Wheny=uvanduandvare functions ofxthen:
dy
dx=udv
dx+vdu
dxQuotient rule:
Wheny=u
vanduandvare functions ofxthen:dy
dx=vdu
dx−udv
dx
v^2Function of a function:
Ifuis a function ofxthen:
dy
dx=dy
du×du
dxParametric differentiation:
Ifxandyare both functions ofθ, then:dy
dx=dy
dθ
dx
dθandd^2 y
dx^2=d
dθ(
dy
dx)dx
dθImplicit function:
d
dx[f(y)]=d
dy[f(y)]×dy
dx