Essential formulae 663
Complex Numbers
z=a+jb=r(cosθ+jsinθ)=r∠θ=rejθ where
j^2 =− 1Modulusr=|z|=
√
(a^2 +b^2 )Argumentθ=argz=tan−^1
b
aAddition:(a+jb)+(c+jd)=(a+c)+j(b+d)
Subtraction:(a+jb)−(c+jd)=(a−c)+j(b−d)
Complex equations:Ifm+jn=p+jqthenm=p
andn=q
Multiplication:z 1 z 2 =r 1 r 2 ∠(θ 1 +θ 2 )
Division:
z 1
z 2
=
r 1
r 2∠(θ 1 −θ 2 )De Moivre’s theorem:
[r∠θ]n=rn∠nθ=rn(cosnθ+jsinnθ)=rejθ
Matrices and Determinants
Matrices:
IfA=
(
ab
cd)
and B=(
ef
gh)
thenA+B=(
a+eb+f
c+gd+h)A−B=(
a−eb−f
c−gd−h)A×B=(
ae+bg af+bh
ce+dg cf+dh)A−^1 =1
ad−bc(
d −b
−ca)If A=
⎛
⎜
⎝a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3⎞
⎟
⎠ then A−^1 =BT
|A|whereBT=transpose of cofactors of matrix ADeterminants:
∣
∣
∣
∣ab
cd∣
∣
∣
∣=ad−bc
∣ ∣ ∣ ∣ ∣ ∣
a 1 b 1 c 1
a 2 b 2 c 2
a 3 b 3 c 3∣ ∣ ∣ ∣ ∣ ∣=a 1∣
∣
∣
∣b 2 c 2
b 3 c 3∣
∣
∣
∣−b^1∣
∣
∣
∣a 2 c 2
a 3 c 3∣
∣
∣
∣+c 1∣
∣
∣
∣a 2 b 2
a 3 b 3∣
∣
∣
∣Differential Calculus
Standard derivatives:
yorf(x)dy
dxorf′(x)axn anxn−^1sinax acosaxcosax −asinaxtanax asec^2 ax
secax asecaxtanaxcosecax −acosecaxcotaxcotax −acosec^2 axeax aeaxlnax1
x
sinhax acoshax
coshax asinhaxtanhax asech^2 axsechax −asechaxtanhaxcosechax −acosechaxcothax
cothax −acosech^2 axsin−^1x
a1
√
a^2 −x^2sin−^1 f(x)f′(x)
√
1 −[f(x)]^2cos−^1x
a− 1
√
a^2 −x^2