666 Higher Engineering Mathematics
Integral Calculus
Standard integrals:
y∫
ydxaxn axn+^1
n+ 1+c(except wheren=−1)cosax1
asinax+csinax −
1
acosax+csec^2 ax1
atanax+ccosec^2 ax −1
acotax+ccosecaxcotax −1
acosecax+csecaxtanax1
asecax+ceax1
aeax+c1
xlnx+ctanax1
aln(secax)+ccos^2 x1
2(
x+sin2x
2)
+csin^2 x1
2(
x−sin2x
2)
+ctan^2 x tanx−x+ccot^2 x −cotx−x+c
1
√
(a^2 −x^2 )sin−^1x
a+c√
(a^2 −x^2 )a^2
2sin−^1x
a+x
2√
(a^2 −x^2 )+cy∫
ydx1
(a^2 +x^2 )1
atan−^1x
a+c1
√
(x^2 +a^2 )sinh−^1x
a+corln[
x+√
(x^2 +a^2 )
a]
+c√
(x^2 +a^2 )a^2
2sinh−^1x
a+x
2√
(x^2 +a^2 )+c1
√
(x^2 −a^2 )cosh−^1x
a+corln[
x+√
(x^2 −a^2 )
a]
+c√
(x^2 −a^2 )x
2√
(x^2 −a^2 )−a^2
1cosh−^1x
a+ct=tan
θ
2
substitution
To determine∫ 1
acosθ+bsinθ+cdθletsinθ=2 t
( 1 +t^2 )cosθ=1 −t^2
1 +t^2anddθ=2 dt
( 1 +t^2 )Integration by parts:
Ifuandvare both functions ofxthen:
∫
udv
dxdx=uv−∫
vdu
dxdxReduction formulae:
∫
xnexdx=In=xnex−nIn− 1
∫
xncosxdx=In=xnsinx+nxn−^1 cosx−n(n− 1 )In− 2