Essential formulae 667
∫π0xncosxdx=In=−nπn−^1 −n(n− 1 )In− 2∫
xnsinxdx=In=−xncosx+nxn−^1 sinx
−n(n− 1 )In− 2
∫
sinnxdx=In=−
1
nsinn−^1 xcosx+n− 1
nIn− 2∫
cosnxdx=In=
1
ncosn−^1 sinx+n− 1
nIn− 2∫π/ 2
0sinnxdx=∫π/ 20cosnxdx=In=n− 1
nIn− 2∫
tannxdx=In=tann−^1 x
n− 1−In− 2∫
(lnx)ndx=In=x(lnx)n−nIn− 1With reference to Fig. FA4.yy 5 f(x)0 x 5 ax 5 b xAFigure FA4Area under a curve:
areaA=∫baydxMean value:
mean value=1
b−a∫baydxR.m.s. value:
r.m.s. value=√{
1
b−a∫bay^2 dx}Volume of solid of revolution:
volume=∫baπy^2 dxabout thex-axisCentroids:
With reference to Fig. FA5:x ̄=∫baxydx
∫baydxand y ̄=1
2∫bay^2 dx
∫baydxyCArea Ax
yy 5 f(x)0 x^5 ax^5 b xFigure FA5Theorem of Pappus:
WithreferencetoFig.FA5,whenthecurveisrotatedone
revolutionabout thex-axis between thelimitsx=aand
x=b,thevolumeVgenerated is given by:V= 2 πAy ̄.Parallel axis theorem:
IfCis the centroid of areaAin Fig. FA6 thenAk^2 BB=AkGG^2 +Ad^2 ork^2 BB=kGG^2 +d^2G BG BdC
Area AFigure FA6