Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

Essential formulae 667


∫π

0

xncosxdx=In=−nπn−^1 −n(n− 1 )In− 2


xnsinxdx=In=−xncosx+nxn−^1 sinx


−n(n− 1 )In− 2

sinnxdx=In=−


1
n

sinn−^1 xcosx+

n− 1
n

In− 2


cosnxdx=In=


1
n

cosn−^1 sinx+

n− 1
n

In− 2

∫π/ 2


0

sinnxdx=

∫π/ 2

0

cosnxdx=In=

n− 1
n

In− 2


tannxdx=In=

tann−^1 x
n− 1

−In− 2


(lnx)ndx=In=x(lnx)n−nIn− 1

With reference to Fig. FA4.

y

y 5 f(x)

0 x 5 ax 5 b x

A

Figure FA4

Area under a curve:


areaA=

∫b

a

ydx

Mean value:


mean value=

1
b−a

∫b

a

ydx

R.m.s. value:


r.m.s. value=

√{
1
b−a

∫b

a

y^2 dx

}

Volume of solid of revolution:


volume=

∫b

a

πy^2 dxabout thex-axis

Centroids:


With reference to Fig. FA5:

x ̄=

∫b

a

xydx
∫b

a

ydx

and y ̄=

1
2

∫b

a

y^2 dx
∫b

a

ydx

y

C

Area A

x
y

y 5 f(x)

0 x^5 ax^5 b x

Figure FA5

Theorem of Pappus:


WithreferencetoFig.FA5,whenthecurveisrotatedone
revolutionabout thex-axis between thelimitsx=aand
x=b,thevolumeVgenerated is given by:V= 2 πAy ̄.

Parallel axis theorem:


IfCis the centroid of areaAin Fig. FA6 then

Ak^2 BB=AkGG^2 +Ad^2 ork^2 BB=kGG^2 +d^2

G B

G B

d

C
Area A

Figure FA6
Free download pdf