Higher Engineering Mathematics, Sixth Edition

(Nancy Kaufman) #1

674 Higher Engineering Mathematics


The Laplace transforms of derivatives:


First derivative

L

{
dy
dx

}
=sL{y}−y(0)

wherey( 0 )is the value ofyatx=0.

Second derivative

L

{
dy
dx

}
=s^2 L{y}−sy( 0 )−y′(0)

wherey′( 0 )is the value of

dy
dx

atx=0.

Fourier Series


If f(x)is a periodic function of period 2πthen its
Fourier series is given by:

f(x)=a 0 +

∑∞

n= 1

(ancosnx+bnsinnx)

where, for the range−πto+π:

a 0 =

1
2 π

∫π

−π

f(x)dx

an=

1
π

∫π

−π

f(x)cosnxdx (n= 1 , 2 , 3 ,...)

bn=

1
π

∫π

−π

f(x)sinnxdx (n= 1 , 2 , 3 ,...)

Iff(x)isa periodicfunctionofperiodLthen itsFourier
series is given by:

f(x)=a 0 +

∑∞

n= 1

{
ancos

(
2 πnx
L

)
+bnsin

( 2 πnx
L

)}

where for the range−

L
2

to+

L
2

:

a 0 =

1
L

∫L/ 2

−L/ 2

f(x)dx

an=L^2

∫ L/ 2

−L/ 2

f(x)cos

( 2 πnx
L

)
dx(n= 1 , 2 , 3 ,...)

bn=L^2

∫ L/ 2

−L/ 2

f(x)sin

( 2 πnx
L

)
dx(n= 1 , 2 , 3 ,...)

Complex or exponential Fourier series:


f(x)=

∑∞

n=−∞

cnej

2 πnx
L

where cn=

1
L

∫ L 2

−L 2

f(x)e−j

2 πnx
L dx

For even symmetry,

cn=

2
L

∫ L 2

0

f(x)cos

( 2 πnx
L

)
dx

For odd symmetry,

cn=−j

2
L

∫ L
2
0

f(x)sin

( 2 πnx
L

)
dx
Free download pdf