674 Higher Engineering Mathematics
The Laplace transforms of derivatives:
First derivativeL{
dy
dx}
=sL{y}−y(0)wherey( 0 )is the value ofyatx=0.Second derivativeL{
dy
dx}
=s^2 L{y}−sy( 0 )−y′(0)wherey′( 0 )is the value ofdy
dxatx=0.Fourier Series
If f(x)is a periodic function of period 2πthen its
Fourier series is given by:f(x)=a 0 +∑∞n= 1(ancosnx+bnsinnx)where, for the range−πto+π:a 0 =1
2 π∫π−πf(x)dxan=1
π∫π−πf(x)cosnxdx (n= 1 , 2 , 3 ,...)bn=1
π∫π−πf(x)sinnxdx (n= 1 , 2 , 3 ,...)Iff(x)isa periodicfunctionofperiodLthen itsFourier
series is given by:f(x)=a 0 +∑∞n= 1{
ancos(
2 πnx
L)
+bnsin( 2 πnx
L)}where for the range−L
2to+L
2:a 0 =1
L∫L/ 2−L/ 2f(x)dxan=L^2∫ L/ 2−L/ 2f(x)cos( 2 πnx
L)
dx(n= 1 , 2 , 3 ,...)bn=L^2∫ L/ 2−L/ 2f(x)sin( 2 πnx
L)
dx(n= 1 , 2 , 3 ,...)Complex or exponential Fourier series:
f(x)=∑∞n=−∞cnej2 πnx
Lwhere cn=1
L∫ L 2−L 2f(x)e−j2 πnx
L dxFor even symmetry,cn=2
L∫ L 20f(x)cos( 2 πnx
L)
dxFor odd symmetry,cn=−j2
L∫ L
2
0f(x)sin( 2 πnx
L)
dx