62 Higher Engineering Mathematics
- Expand(p+ 2 q)^11 as far as the fifth term.
⎡
⎣
p^11 + 22 p^10 q+ 220 p^9 q^2+ 1320 p^8 q^3 + 5280 p^7 q^4⎤
⎦- Determine the sixth term of
(
3 p+q
3) 13
.[34749p^8 q^5 ]- Determine the middle term of( 2 a− 5 b)^8.
[700000a^4 b^4 ] - Use the binomial theorem to determine, cor-
rect to 4 decimal places:
(a)( 1. 003 )^8 (b)( 1. 042 )^7
[(a) 1.0243 (b) 1.3337] - Use the binomial theorem to determine, cor-
rect to 5 significant figures:
(a)( 0. 98 )^7 (b)( 2. 01 )^9
[(a) 0.86813 (b) 535.51] - Evaluate( 4. 044 )^6 correct to 3 decimal places.
[4373.880]
7.4 Further worked problems on the
binomial series
Problem 11.
(a) Expand
1
( 1 + 2 x)^3in ascending powers ofxasfar as the term inx^3 , using the binomial series.
(b) State the limits ofxfor which the expansion
is valid.(a) Using the binomial expansion of( 1 +x)n,where
n=−3andxis replaced by 2xgives:
1
( 1 + 2 x)^3=( 1 + 2 x)−^3= 1 +(− 3 )( 2 x)+(− 3 )(− 4 )
2!( 2 x)^2+(− 3 )(− 4 )(− 5 )
3!( 2 x)^3 +···= 1 − 6 x+ 24 x^2 − 80 x^3 +···(b) The expansion is valid provided| 2 x|<1,i.e. |x|<1
2or−1
2<x<1
2Problem 12.
(a) Expand1
( 4 −x)^2in ascending powers ofxas
far as the term inx^3 , using the binomial
theorem.
(b) What are the limits ofxfor which the expan-
sion in (a) is true?(a)1
( 4 −x)^2=1
[
4(
1 −x
4)] 2 =142(
1 −x
4) 2=1
16(
1 −x
4)− 2Using the expansion of( 1 +x)n
1
( 4 −x)^2=1
16(
1 −x
4)− 2=1
16[
1 +(− 2 )(
−x
4)+(− 2 )(− 3 )
2!(
−x
4) 2+(− 2 )(− 3 )(− 4 )
3!(
−x
4) 3
+···]=1
16(
1 +x
2+3 x^2
16+x^3
16+···)(b) The expansion in (a) is true provided∣∣
∣x
4∣∣
∣<1,i.e.|x|< 4 or− 4 <x< 4Problem 13.√ Use the binomial theorem to expand
4 +xin ascending powers ofxto four terms. Give
the limits ofxfor which the expansion is valid.√
4 +x=√[
4(
1 +x
4)]=√
4√(
1 +x
4)
= 2(
1 +x
4)^12Using the expansion of( 1 +x)n,2(
1 +x
4)^1
2= 2[
1 +(
1
2)(
x
4)
+( 1 / 2 )(− 1 / 2 )
2!(x
4) 2