The binomial series 63
+( 1 / 2 )(− 1 / 2 )(− 3 / 2 )
3!(x
4) 3
+···]= 2(
1 +x
8−x^2
128+x^3
1024−···)= 2 +x
4−x^2
64+x^3
512−···This is valid when
∣
∣
∣x
4∣
∣
∣<1,i.e. |x|< 4 or− 4 <x< 4
Problem 14. Expand1
√
( 1 − 2 t)in ascendingpowers oftas far as the term int^3.
State the limits oftfor which the expression
is valid.
1
√
( 1 − 2 t)=( 1 − 2 t)−1
2= 1 +(
−1
2)
(− 2 t)+(− 1 / 2 )(− 3 / 2 )
2!(− 2 t)^2+(− 1 / 2 )(− 3 / 2 )(− 5 / 2 )
3!(− 2 t)^3 +···,using the expansion for( 1 +x)n= 1 +t+3
2t^2 +5
2t^3 +···The expression is valid when| 2 t|<1,
i.e. |t|<
1
2or−1
2<t<1
2Problem 15. Simplify√ (^3) ( 1 − 3 x)√( 1 +x)
(
1 +
x
2
) 3
given that powers ofxabove the first may be
neglected.
√ (^3) ( 1 − 3 x)√( 1 +x)
(
1 +
x
2
) 3
=( 1 − 3 x)
1
(^3) ( 1 +x)
1
2
(
1 +
x
2
)− 3
≈
[
1 +
(
1
3
)
(− 3 x)
][
1 +
(
1
2
)
(x)
][
1 +(− 3 )
(x
2
)]
when expanded by the binomial theorem as far as thex
term only,
=( 1 −x)
(
1 +
x
2
)(
1 −
3 x
2
)
(
1 −x+
x
2
−
3 x
2
)
when powers ofxhigher than
unity are neglected
=( 1 − 2 x)
Problem 16. Express
√
( 1 + 2 x)
√ (^3) ( 1 − 3 x)as a power
series as far as the term inx^2. State the range of
values ofxfor which the series is convergent.
√
( 1 + 2 x)
√ (^3) ( 1 − 3 x)=( 1 + 2 x)
1
(^2) ( 1 − 3 x)−
1
3
( 1 + 2 x)
1
(^2) = 1 +
(
1
2
)
( 2 x)
- ( 1 / 2 )(− 1 / 2 )
2!
( 2 x)^2 +···
= 1 +x−
x^2
2
+···which is valid for
| 2 x|< 1 ,i.e.|x|<
1
2
( 1 − 3 x)−
1
(^3) = 1 +(− 1 / 3 )(− 3 x)
(− 1 / 3 )(− 4 / 3 )
2!
(− 3 x)^2 +···
= 1 +x+ 2 x^2 +···which is valid for
| 3 x|< 1 ,i.e.|x|<
1
3
Hence
√
( 1 + 2 x)
√ (^3) ( 1 − 3 x)=( 1 + 2 x)
1
(^2) ( 1 − 3 x)−
1
3
(
1 +x−
x^2
2
+···
)
( 1 +x+ 2 x^2 +···)
= 1 +x+ 2 x^2 +x+x^2 −
x^2
2
,
neglecting terms of higher power than 2,
= 1 + 2 x+
5
2
x^2
The series is convergent if−
1
3
<x<
1
3