148 CHAPTER 3. MATHEMATICAL FOUNDATIONS
It follows that
(3.4.19) g ̃ij=−gikgjlg ̃kl.
Thus, (3.4.18) is rewritten as
(3.4.20)
d
dλ
∣
∣
∣
λ= 0
det(gij+λ ̃gij) =−ggijg ̃ij.
For the Einstein-Hilbert functional (3.4.12), we have
d
dλ
∣
∣
∣
λ= 0
F(gij+λg ̃ij)
=
∫
M
[
Rij ̃gij
√
−g−
1
2
√
−g
R
d
dλ
det(gij+λ ̃gij)+gij
d
dλ
Rij(gij+tg ̃ij)
√
−g
]
dx
∣
∣
∣
λ= 0
=(by( 3. 4. 20 ))
=
∫
M
(Rij−
1
2
gijR) ̃gij
√
−gdx+
∫
M
gij
d
dλ
∣
∣
∣
λ= 0
Rij(gij+λ ̃gij)
√
−gdx.
In view of (3.4.5) and
〈δF,g ̃ij〉=
∫
M
δF ̃gij
√
−gdx,
d
dλ
∣
∣
∣
λ= 0
Rij(gij+λ ̃gij) =
∂Rij
∂gkl
̃gkl,
we arrive at
∫
M
[
δF−(Rij−
1
2
gijR)
]
̃gij
√
−gdx=
∫
M
gij
∂Rij
∂gkl
̃gkl
√
−gdx.
To verify (3.4.15), it suffices to prove that
(3.4.21)
∫
M
gijδRij
√
−gdx= 0 ,
whereδRijis the variational element
δRij=Rij(gkl+δgkl)−Rij(gkl),
which are equivalent to the following directional derivative:
d
dλ
∣
∣
∣
λ= 0
Rij(gij+λ ̃gij).
To get (3.4.21), we takeRijin the form
(3.4.22) Rij=
∂Γkki
∂xj
−
∂Γkij
∂xk
+ΓlikΓkl j−ΓlijΓklk.