Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

3.4. VARIATIONS WITHDIVA-FREE CONSTRAINTS 149


By the Riemannian Geometry, for each pointx 0 ∈Mthere exists a coordinate system
under which


(3.4.23) Γkij(x 0 ) = 0 ∀ 1 ≤i,j,k≤n.


It is known that the covariant derivatives ofgijandgijare zero, i.e.Dgij=0 andDgij=0.
Hence we infer from (3.4.33) that


∂gij(x 0 )
∂xk

= 0 ,


∂gij(x 0 )
∂xk

= 0 ∀ 1 ≤i,j,k≤n.

By (3.4.22), atx 0 , we have

gijδRij=gij

(



∂xj

δΓkik−


∂xk

δΓkij

)


=



∂xk

(


gikδΓlil−gijδΓkij

)


(3.4.24).


AlthoughΓkijare not tensor fields, the variations


δΓkij(x) =Γkij(x+δx)−Γkij(x)

are (1,2)-tensor fields. Therefore atx 0 , (3.4.24) can be rewritten as


(3.4.25) gijδRij=
∂uk
∂xk


=divu atx 0 ∈M.

where


uk=gikδΓlil−gijδΓkij

is a vector field. Since (3.4.25) is independent of the coordinate systems, in a general coordi-
nate system the relation (3.4.25) becomes


(3.4.26) gijδRij=divu=


1



−g


∂xk

(



−guk) atx 0 ∈M.

Asx 0 ∈Mis arbitrary, the formula (3.4.26) holds true onM. Hence we have



M

gijδRij


−gdx=


M

divu


−gdx.

SinceMis closed, i.e.∂M=/0, it follows from (3.2.37) that



M

gijδRij


−gdx= 0.

Thus we derive (3.4.21), and the derivative operator of the Einstein-Hilbert functional (3.4.12)
is as given by (3.4.15).

Free download pdf