246 CHAPTER 4. UNIFIED FIELD THEORY
- U( 1 )gauge transformation:
L→ei
2 βL,φ→e−
2 iβ
φ,
R→eiβR,Wμa→Wμa−2
g 2∂μβ,Bμ→Bμ+2
g 2∂μβ.4.4.2 Gravitational field equations derived by PID.
(4.6.58)
δLWS
δWμa= 0 ,
δLWS
δBμ= 0 ,
δLWS
δ φ= 0 ,
δLWS
δL= 0 ,
δL
δR= 0.
We remark here that the Higgs field in this setting is includedin the Lagrangian action,
drastically different from the mechanism based on PID developed earlier.
In addition, the particleφ+represents a massless boson with a positive electric charge.
However, in reality no such particles exist. Hence we have totake the Higgs scalar field as
(4.6.59) φ=
(
0
φ)
.
In fact, in the WS theory, the Higgs fieldφis essentially taken as the form (4.6.59). Under
the condition (4.6.59), the variational equations (4.6.58) of the SW action (4.6.55)-(4.6.57)
are expressed as follows:
Gauge field equations (massless):(4.6.60)
∂νWν μ^1 −g 1 gα α(Wα μ^2 Wα^3 −Wα μ^3 Wα^2 )+g 1
2Jμ^1 −g^21
2φ^2 Wμ^1 = 0 ,∂νWν μ^2 −g 1 gα α(Wα μ^3 Wα^1 −Wα μ^1 Wα^3 )+g 1
2Jμ^2 −g^21
2φ^2 Wμ^2 = 0 ,∂νWν μ^3 −g 1 gα α(Wα μ^1 Wα^2 −Wα μ^2 Wα^1 )+g 1
2Jμ^3 −g 1
2φ^2 (g 1 Wμ^3 −g 2 Bμ) = 0 ,∂νBν μ−g 2
2JμL−g 2 JRμ−g 2
2φ^2 (g 2 Bμ−g 1 Wμ^3 ) = 0.Higgs field equations:∂μ∂μφ−1
4
(4.6.61) φ(g 12 WμaWμa+g^22 BμBμ− 2 g 1 g 2 Wμ^3 Bμ)
−λ φ(φ^2 −a^2 )+Gl(lLR+RlL) = 0.Dirac equations:(4.6.62)
iγμ(∂μ+ig 2 Bμ)R−GlφlL= 0 ,iγμ(∂μ+i
g 2
2Bμ−i
g 1
2Wμaσa)(
νL
lL)
−GlR(
0
φ