Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

246 CHAPTER 4. UNIFIED FIELD THEORY



  • U( 1 )gauge transformation:


L→e

i
2 βL,

φ→e−
2 iβ
φ,
R→eiβR,

Wμa→Wμa−

2


g 2

∂μβ,

Bμ→Bμ+

2


g 2

∂μβ.

4.4.2 Gravitational field equations derived by PID.


(4.6.58)


δLWS
δWμa

= 0 ,


δLWS
δBμ

= 0 ,


δLWS
δ φ

= 0 ,


δLWS
δL

= 0 ,


δL
δR

= 0.


We remark here that the Higgs field in this setting is includedin the Lagrangian action,
drastically different from the mechanism based on PID developed earlier.
In addition, the particleφ+represents a massless boson with a positive electric charge.
However, in reality no such particles exist. Hence we have totake the Higgs scalar field as


(4.6.59) φ=


(


0


φ

)


.


In fact, in the WS theory, the Higgs fieldφis essentially taken as the form (4.6.59). Under
the condition (4.6.59), the variational equations (4.6.58) of the SW action (4.6.55)-(4.6.57)
are expressed as follows:


Gauge field equations (massless):

(4.6.60)


∂νWν μ^1 −g 1 gα α(Wα μ^2 Wα^3 −Wα μ^3 Wα^2 )+

g 1
2

Jμ^1 −

g^21
2

φ^2 Wμ^1 = 0 ,

∂νWν μ^2 −g 1 gα α(Wα μ^3 Wα^1 −Wα μ^1 Wα^3 )+

g 1
2

Jμ^2 −

g^21
2

φ^2 Wμ^2 = 0 ,

∂νWν μ^3 −g 1 gα α(Wα μ^1 Wα^2 −Wα μ^2 Wα^1 )+

g 1
2

Jμ^3 −

g 1
2

φ^2 (g 1 Wμ^3 −g 2 Bμ) = 0 ,

∂νBν μ−

g 2
2

JμL−g 2 JRμ−

g 2
2

φ^2 (g 2 Bμ−g 1 Wμ^3 ) = 0.

Higgs field equations:

∂μ∂μφ−

1


4


(4.6.61) φ(g 12 WμaWμa+g^22 BμBμ− 2 g 1 g 2 Wμ^3 Bμ)


−λ φ(φ^2 −a^2 )+Gl(lLR+RlL) = 0.

Dirac equations:

(4.6.62)


iγμ(∂μ+ig 2 Bμ)R−GlφlL= 0 ,

iγμ(∂μ+i
g 2
2

Bμ−i
g 1
2

Wμaσa)

(


νL
lL

)


−GlR

(


0


φ

)


= 0.

Free download pdf