Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

426 CHAPTER 7. ASTROPHYSICS AND COSMOLOGY


the nonzero components of the Levi-civita connections are


Γ^000 =


1


2 c

ut, Γ^011 =

1


2 c

ev−u(kt+vt), Γ^010 =

1


2


ur,

Γ^022 =


r^2
2 c

e−ukt, Γ^033 =

r^2
2 c

e−uktsin^2 θ, Γ^100 =

1


2


eu−vur

Γ^111 =


1


2


vr, Γ^110 =

1


2 c
(kt+vt), Γ^122 =−re−v,

Γ^133 =−re−vsin^2 θ, Γ^221 =

1


r

, Γ^233 =sinθcosθ,

Γ^331 =

1


r

, Γ^332 =


cosθ
sinθ

,


and the nonzero components of the Ricci curvature tensor read


R 00 =


1


2 c^2

[


3 ktt+

3


2


kt^2 +vtt+

1


2


vt^2 +ktvt−ut(kt+vt)

]



1


2


eu−k−v

[


urr+

1


2


u^2 r−

1


2


urvr+

2


r

ur

]


,


R 11 =−


ek+v−u
2 c^2

[


ktt+

3


2


kt^2 +vtt+v^2 t+ 3 ktvt−

1


2


ut(kt+vt)

]


+


1


2


[


urr+

1


2


u^2 r−

1


2


urvr−

2


r
vr

]


,


R 22 =−


r^2 ek−u
2 c^2

[


ktt+

3


2


kt^2 +

1


2


kt(vt−ut)

]


−e−v

[


ev+

r
2
(kr+vr−ur)− 1

]


,


R 33 =R 22 sin^2 θ,

R 10 =−

1


cr

[


( 1 +


r
2

ur)kt+vr

]


.


The energy-momentum tensor is in the form


Tμ ν=





ρ g 00 g 11 Prc 0 0
g 00 g 11 Prc g 11 p 0 0
0 0 g 22 p 0
0 0 0 g 33 p




,


whereρis the energy density,Pris the radial component of the momentum density. Then
direct computations imply that


T=gμ νTμ ν=−ρ+ 3 p, T 00 −

1


2


g 00 T=

1


2


(ρ+ 3 p),

T 11 −

1


2


g 11 T=

1


2


ek+v(ρ−p), T 22 −

1


2


g 22 T=

1


2


ekr^2 (ρ−p),

T 33 −

1


2


g 33 T= (T 22 −

1


2


g 33 T)sin^2 θ, T 10 −

1


2


g 10 T=g 00 g 11 Prc.
Free download pdf