426 CHAPTER 7. ASTROPHYSICS AND COSMOLOGY
the nonzero components of the Levi-civita connections are
Γ^000 =
1
2 c
ut, Γ^011 =
1
2 c
ev−u(kt+vt), Γ^010 =
1
2
ur,
Γ^022 =
r^2
2 c
e−ukt, Γ^033 =
r^2
2 c
e−uktsin^2 θ, Γ^100 =
1
2
eu−vur
Γ^111 =
1
2
vr, Γ^110 =
1
2 c
(kt+vt), Γ^122 =−re−v,
Γ^133 =−re−vsin^2 θ, Γ^221 =
1
r
, Γ^233 =sinθcosθ,
Γ^331 =
1
r
, Γ^332 =
cosθ
sinθ
,
and the nonzero components of the Ricci curvature tensor read
R 00 =
1
2 c^2
[
3 ktt+
3
2
kt^2 +vtt+
1
2
vt^2 +ktvt−ut(kt+vt)
]
−
1
2
eu−k−v
[
urr+
1
2
u^2 r−
1
2
urvr+
2
r
ur
]
,
R 11 =−
ek+v−u
2 c^2
[
ktt+
3
2
kt^2 +vtt+v^2 t+ 3 ktvt−
1
2
ut(kt+vt)
]
+
1
2
[
urr+
1
2
u^2 r−
1
2
urvr−
2
r
vr
]
,
R 22 =−
r^2 ek−u
2 c^2
[
ktt+
3
2
kt^2 +
1
2
kt(vt−ut)
]
−e−v
[
ev+
r
2
(kr+vr−ur)− 1
]
,
R 33 =R 22 sin^2 θ,
R 10 =−
1
cr
[
( 1 +
r
2
ur)kt+vr
]
.
The energy-momentum tensor is in the form
Tμ ν=
ρ g 00 g 11 Prc 0 0
g 00 g 11 Prc g 11 p 0 0
0 0 g 22 p 0
0 0 0 g 33 p
,
whereρis the energy density,Pris the radial component of the momentum density. Then
direct computations imply that
T=gμ νTμ ν=−ρ+ 3 p, T 00 −
1
2
g 00 T=
1
2
(ρ+ 3 p),
T 11 −
1
2
g 11 T=
1
2
ek+v(ρ−p), T 22 −
1
2
g 22 T=
1
2
ekr^2 (ρ−p),
T 33 −
1
2
g 33 T= (T 22 −
1
2
g 33 T)sin^2 θ, T 10 −
1
2
g 10 T=g 00 g 11 Prc.