Mathematical Principles of Theoretical Physics

(Rick Simeone) #1

7.2. STARS 427


To derive an explicit expression of (7.2.46), we need to compute the covariant derivatives of
the dual gravitational fieldφ:


Dμ νφ=

∂^2 φ
∂xμ∂xν

−Γλμ ν

∂ φ
∂xλ

.


Letφ=φ(r,t). Then we have


D 00 φ=

1


c^2

φtt−

1


2 c^2

utφt−

1


2


eu−vurφr,

D 11 φ=φrr−

1


2 c^2

ev−u(kt+vt)φt−

1


2


vrφr,

D 22 φ=−

r^2
2 c^2
e−uktφt+re−vφr,

D 33 φ=D 22 φsin^2 θ,

D 10 φ=φrt−

1


2 c
(urφt+φrkt+φrvt).

Thus, the field equations (7.2.46) are written as

R 10 =−D 1 D 0 φ,

Rkk=−

8 πG
c^4

(Tkk−

1


2


gkkT)−(Dkkφ−

1


2


gkkΦ) fork= 0 , 1 , 2 ,

which are expressed as


(
1 +

rur
2

)


kt+vt=

8 πGr
c^2

eu+k+vPr+crφrt−

r
2

(7.2.47) (urφt+φrkz+φrvt),


3 ktt+

3


2


kt^2 +vtt+

1


2


(7.2.48) vt^2 +ktvt−ut(kt+vt)


−c^2 eu−k−v

[


urr+

1


2


u^2 r−

1


2


urvr+

2


r

ur

]


=−


8 πG
c^2

(ρ+ 3 p)−c^2

(


D 00 φ+eu−k−vD 11 φ+
2 eu−k
r^2

D 22 φ

)


,


ktt+

3


2


kt^2 +vtt+v^2 t+ 3 ktvt−

1


2


(7.2.49) ut(kt+vt)


−c^2 eu−k−v

[


urr+

1


2


u^2 r−

1


2


urvr−

2


r

vr

]


=


8 πG
c^2

eu(ρ−p)+c^2 (eu−k−vD 11 φ−D 00 φ−
2 eu−k
r^2

D 22 φ),

ktt+

3


2


kt^2 +

1


2


kt(vt−ut)+

2 c^2 eu−k−v
r^2

[


ev+

r
2
(kr+vr−ur)− 1

]


(7.2.50)


=


8 πG
c^2

eu(ρ−p)+c^2 (D 00 φ−eu−k−vD 11 φ),

The equations (7.2.47)-(7.2.50) have seven unknown functionsu,v,k,φ,Pr,ρ,p, in which
Pr,ρ,psatisfy the fluid dynamic equations and the equation of stateintroduced hereafter.

Free download pdf