7.2. STARS 427
To derive an explicit expression of (7.2.46), we need to compute the covariant derivatives of
the dual gravitational fieldφ:
Dμ νφ=
∂^2 φ
∂xμ∂xν
−Γλμ ν
∂ φ
∂xλ
.
Letφ=φ(r,t). Then we have
D 00 φ=
1
c^2
φtt−
1
2 c^2
utφt−
1
2
eu−vurφr,
D 11 φ=φrr−
1
2 c^2
ev−u(kt+vt)φt−
1
2
vrφr,
D 22 φ=−
r^2
2 c^2
e−uktφt+re−vφr,
D 33 φ=D 22 φsin^2 θ,
D 10 φ=φrt−
1
2 c
(urφt+φrkt+φrvt).
Thus, the field equations (7.2.46) are written as
R 10 =−D 1 D 0 φ,
Rkk=−
8 πG
c^4
(Tkk−
1
2
gkkT)−(Dkkφ−
1
2
gkkΦ) fork= 0 , 1 , 2 ,
which are expressed as
(
1 +
rur
2
)
kt+vt=
8 πGr
c^2
eu+k+vPr+crφrt−
r
2
(7.2.47) (urφt+φrkz+φrvt),
3 ktt+
3
2
kt^2 +vtt+
1
2
(7.2.48) vt^2 +ktvt−ut(kt+vt)
−c^2 eu−k−v
[
urr+
1
2
u^2 r−
1
2
urvr+
2
r
ur
]
=−
8 πG
c^2
(ρ+ 3 p)−c^2
(
D 00 φ+eu−k−vD 11 φ+
2 eu−k
r^2
D 22 φ
)
,
ktt+
3
2
kt^2 +vtt+v^2 t+ 3 ktvt−
1
2
(7.2.49) ut(kt+vt)
−c^2 eu−k−v
[
urr+
1
2
u^2 r−
1
2
urvr−
2
r
vr
]
=
8 πG
c^2
eu(ρ−p)+c^2 (eu−k−vD 11 φ−D 00 φ−
2 eu−k
r^2
D 22 φ),
ktt+
3
2
kt^2 +
1
2
kt(vt−ut)+
2 c^2 eu−k−v
r^2
[
ev+
r
2
(kr+vr−ur)− 1
]
(7.2.50)
=
8 πG
c^2
eu(ρ−p)+c^2 (D 00 φ−eu−k−vD 11 φ),
The equations (7.2.47)-(7.2.50) have seven unknown functionsu,v,k,φ,Pr,ρ,p, in which
Pr,ρ,psatisfy the fluid dynamic equations and the equation of stateintroduced hereafter.