7.2. STARS 427
To derive an explicit expression of (7.2.46), we need to compute the covariant derivatives of
the dual gravitational fieldφ:
Dμ νφ=∂^2 φ
∂xμ∂xν−Γλμ ν∂ φ
∂xλ.
Letφ=φ(r,t). Then we have
D 00 φ=1
c^2φtt−1
2 c^2utφt−1
2
eu−vurφr,D 11 φ=φrr−1
2 c^2ev−u(kt+vt)φt−1
2
vrφr,D 22 φ=−r^2
2 c^2
e−uktφt+re−vφr,D 33 φ=D 22 φsin^2 θ,D 10 φ=φrt−1
2 c
(urφt+φrkt+φrvt).Thus, the field equations (7.2.46) are written asR 10 =−D 1 D 0 φ,Rkk=−8 πG
c^4(Tkk−1
2
gkkT)−(Dkkφ−1
2
gkkΦ) fork= 0 , 1 , 2 ,which are expressed as
(
1 +rur
2)
kt+vt=8 πGr
c^2eu+k+vPr+crφrt−r
2(7.2.47) (urφt+φrkz+φrvt),
3 ktt+3
2
kt^2 +vtt+1
2
(7.2.48) vt^2 +ktvt−ut(kt+vt)
−c^2 eu−k−v[
urr+1
2
u^2 r−1
2
urvr+2
rur]
=−
8 πG
c^2(ρ+ 3 p)−c^2(
D 00 φ+eu−k−vD 11 φ+
2 eu−k
r^2D 22 φ)
,
ktt+3
2
kt^2 +vtt+v^2 t+ 3 ktvt−1
2
(7.2.49) ut(kt+vt)
−c^2 eu−k−v[
urr+1
2
u^2 r−1
2
urvr−2
rvr]
=
8 πG
c^2eu(ρ−p)+c^2 (eu−k−vD 11 φ−D 00 φ−
2 eu−k
r^2D 22 φ),ktt+3
2
kt^2 +1
2
kt(vt−ut)+2 c^2 eu−k−v
r^2[
ev+r
2
(kr+vr−ur)− 1]
(7.2.50)
=
8 πG
c^2eu(ρ−p)+c^2 (D 00 φ−eu−k−vD 11 φ),The equations (7.2.47)-(7.2.50) have seven unknown functionsu,v,k,φ,Pr,ρ,p, in which
Pr,ρ,psatisfy the fluid dynamic equations and the equation of stateintroduced hereafter.