References 195
(b) We assume that the incoming rays have intensityI 0. Show that the average total
intensity of waves with wave vectork 1 arriving at the detector is given by
I(k 1 ,r)=I 0
〈N
∑
l,j= 1
eik(rl−rj)
〉
withk=k 1 −k 0.
(c) Show that this expression is equal toI 0 NS(k), whereSis the static structure
factor, defined in terms of the correlation functiongas
S(k)= 1 +n
∫
d^3 rg(r)eikr.
(nis the particle densityN/V.)
7.2 The magnetic susceptibility of the Ising model on anL×Lsquare lattice is defined
byχ=∂m/∂H, wheremis the magnetisation andhthe magnetic field.
(a) Show that the magnetic susceptibility can be written as
χ=
1
L^2 kBT
∑
i,j
(〈sisj〉−〈si〉^2 ).
(b) A scaling exponentηassociated with the magnetic correlation function (see
Eq. (7.48)) is defined by
g(r)∝r^2 −d−η.
Assuming that close to the critical point this form extends to a distanceξ, whereξ
is the correlation length, find the following scaling relation betweenγ,ηandν:
γ=ν( 2 −η).
References
[1] T. L. Hill,Statistical Mechanics. New York, McGraw-Hill, 1956.
[2] K. Huang,Statistical Mechanics, 2nd edn. New York, John Wiley, 1987.
[3] L. E. Reichl,Equilibrium Statistical Mechanics. Englewood Cliffs, NJ, Prentice-Hall, 1989.
[4] F. Reiff,Fundamentals of Statistical and Thermal Physics. Kogakusha, McGraw-Hill, 1965.
[5] M. Plischke and H. Bergersen, Equilibrium Statistical Physics. Englewood Cliffs, NJ,
Prentice-Hall, 1989.
[6] J. Yeomans,Equilibrium Statistical Mechanics. Oxford, Oxford University Press, 1989.
[7] D. Chandler,Introduction to Modern Statistical Mechanics. New York, Oxford University Press,
1987.
[8] M. Le Bellac, F. Mortessagne, and G. G. Batrouni,Equilibrium and Non-equilibrium Statistical
Thermodynamics. Cambridge, Cambridge University Press, 2004.
[9] S. W. Lovesey,Theory of Neutron Scattering from Condensed Matter, vols 1 and 2. Oxford,
Clarendon Press, 1984.
[10] D. Frenkel, ‘Free energy computation and first-order phase transitions,’ inMolecular Dynamics
Simulation of Statistical Mechanical Systems(G. Ciccotti and W. G. Hoover, eds.),Proceedings
of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97. Amsterdam,
North-Holland, 1986, pp. 151–188.