196 Classical equilibrium statistical mechanics
[11] A. Rahman, ‘Correlations in the motion of atoms in liquid argon,’Phys. Rev.,136A(1964)
405–11.
[12] A. Rahman and F. Stillinger, ‘Molecular dynamics study of liquid water,’J. Chem. Phys., 55
(1971) 3336–59.
[13] J. P. Hansen and I. R. McDonald,Theory of Simple Liquids, 2nd edn. New York, Academic
Press, 1986.
[14] J. L. Lebowitz, J. K. Percus, and L. Verlet, ‘Ensemble dependence of fluctuations with application
to machine calculations,’Phys. Rev., 253 (1967), 250–4.
[15] B. J. Alder and T. E. Wainwright, ‘Enhancement of diffusion by vortex-like motion of classical
hard particles,’J. Phys. Soc. Japan Suppl., 26 (1969), 267–9.
[16] B. J. Alder and T. E. Wainwright, ‘Decay of the velocity autocorrelation function,’Phys. Rev.
A, 1 (1970), 18–21.
[17] M. E. Fisher, ‘The theory of equilibrium critical phenomena,’Rep. Prog. Phys., 30 (1967),
615–730.
[18] L. Onsager, ‘Crystal statistics. I. A two-dimensional model with an order–disorder transition,’
Phys. Rev., 65 (1944), 117–49.
[19] T. D. Schultz, D. C. Mattis, and E. H. Lieb, ‘Two-dimensional Ising model as a soluble problem
of many fermions,’Rev. Mod. Phys., 36 (1964), 856–71.
[20] R. J. Baxter,Exactly Solved Models in Statistical Mechanics. London, Academic Press, 1982.
[21] R. J. Glauber, ‘Time-dependent statistics of the Ising model,’J. Math. Phys, 4 (1963), 294–307.
[22] R. Pathria,Statistical Mechanics, 2nd edn. Oxford, Butterworth–Heinemann, 1996.
[23] C. Domb and M. S. Green (vols. 1–7)/C. Domb and J. L. Lebowitz (vols. 7–19),Phase Transitions
and Critical Phenomena. New York, Academic Press, 1972–2000.
[24] A. Z. Panagiotopoulos, ‘Direct determination of phase coexistence properties of fluids by Monte
Carlo simulation in a new ensemble,’Mol. Phys., 61 (1987), 813–26.
[25] A. Z. Panagiotopoulos, N. Quirke, and D. J. Tildesley, ‘Phase-equilibria by simulation in the
Gibbs ensemble – alternative derivation, generalization and application to mixture and membrane
equilibria,’Mol. Phys., 63 (1988), 527–45.
[26] L. Kadanoff, ‘Scaling laws for Ising models nearTc,’Physics, 2 (1966), 263–72.
[27] C. Domb and M. S. Green, eds.,Phase Transitions and Critical Phenomena, vol. 6. New York,
Academic Press, 1976.
[28] S.-K. Ma,Modern Theory of Critical Phenomena. New York, Benjamin, 1976.
[29] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, ‘Infinite conformal symmetry in two
dimensional quantum field theory,’Nucl. Phys. B, 241 (1984), 333–80.
[30] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, ‘Infinite conformal symmetry of
critical fluctuations in two dimensions,’J. Stat. Phys., 34 (1984), 763–74.
[31] J. Cardy, ‘Conformal Invariance,’Phase Transitions and Critical Phenomena, (C. Domb and J.
L. Lebauitz, eds). London, Academic Press, 1987, ch. 2, vol. 11.
[32] S. Tang and D. P. Landau, ‘Monte Carlo study of dynamic universality in two-dimensional Potts
models,’Phys. Rev. B, 36 (1985), 567–73.
[33] J. Cardy, ed.,Finite Size Scaling. Amsterdam, North-Holland, 1988.
[34] V. Privman, ed.,Finite Size Scaling and Numerical Simulation of Statistical Systems. Singapore,
World Scientific, 1988.