Computational Physics

(Rick Simeone) #1

260 Molecular dynamics simulations


[10] J. G. Powles, W. A. B. Evans, and N. Quirke, ‘Non-destructive molecular dynamics simulation
of the chemical potential of a fluid,’Mol. Phys., 38 (1982), 1347–70.
[11] J. P. Hansen and I. R. McDonald,Theory of Simple Liquids2nd edn. New York, Academic Press,
1986.
[12] L. Verlet, ‘Computer ‘experiments’ on classical fluids. II. Equilibrium correlation functions,’
Phys. Rev., 165 (1968), 201–14.
[13] A. Rahman, ‘Correlations in the motion of atoms in liquid argon,’Phys. Rev.,136A(1964),
405–11.
[14] B. J. Alder and T. E. Wainwright, ‘Phase transition for a hard sphere system,’J. Chem. Phys.,
27 (1957), 1208–9.
[15] S. M. Thompson, ‘Use of neighbour lists in molecular dynamics,’CCP5 Quarterly, 8 (1983),
20–8.
[16] H. J. C. Berendsen and W. F. van Gunsteren, ‘Practical algorithms for molecular dynamics sim-
ulations,’ inMolecular Dynamics Simulation of Statistical Mechanical Systems(G. Ciccotti
and W. G. Hoover, eds.),Proceedings of the International School of Physics “Enrico Fermi”,
Varenna 1985, vol. 97. Amsterdam, North-Holland, 1986, pp. 43–65.
[17] J. M. Sanz-Serna, ‘Symplectic integrators for Hamiltonian problems: an overview,’Acta
Numerica, 1 (1992), 243–86.
[18] K. Feng and M.-Z. Qin, ‘Hamiltonian algorithms for Hamiltonian systems and a comparative
numerical study,’Comput. Phys. Commun., 65 (1991), 173–87.
[19] R. W. Hockney and J. W. Eastwood,Computer Simulation Using Particles, 2nd edn. Bristol,
Institute of Physics Publishing, 1988.
[20] D. I. Okunbor and R. D. Skeel, ‘Explicit canonical methods for Hamiltonian systems,’Math.
Comput., 59 (1992), 439–55.
[21] H. Yoshida, ‘Construction of higher order symplectic integrators,’Phys. Lett. A, 150 (1990),
262–8.
[22] E. Forest, ‘Sixth-order Lie group integrators,’J. Comp. Phys., 99 (1992), 209–13.
[23] C. W. Gear, ‘The numerical integration of ordinary differential equations of various orders,’
report ANL7126, Argonne National Laboratory, 1966.
[24] C. W. Gear,Numerical Initial Value Problems in Ordinary Differential Equations. Englewood
Cliffs, NJ, Prentice-Hall, 1971.
[25] D. I. Okunbor, ‘Energy conserving, Liouville and symplectic integrators,’J. Comput. Phys., 120
(1995), 375–8.
[26] B. L. Holian, A. F. Voter, and R. Ravelo, ‘Thermostatted molecular dynamics: How to avoid the
Toda demon hidden in Nosé–Hoover dynamics,’Phys. Rev. E, 52 (1995), 2338–47.
[27] R. D. Ruth, ‘A canonical integration technique,’IEEE Trans. Nucl. Sci., 30 (1983), 2669–71.
[28] K. Feng, ‘On difference schemes and symplectic geometry,’ inBeijing Symposium on Differential
Geometry and Differential Equations: Computation of Partial Differential Equations(K. Feng,
ed.). Beijing, Science Press, 1985, p. 45.
[29] J. D. Meiss, ‘Symplectic maps, variational principles and transport,’Rev. Mod. Phys., 64 (1992),
795–848.
[30] C. Cohen-Tannoudji, B. Diu, and F. Laloë,Quantum Mechanics, vols. 1 and 2. New York/Paris,
John Wiley/Hermann, 1977.
[31] A. Auerbach and S. P. Friedman, ‘Long-time behaviour of numerically computed orbits: small
and intermediate timestep analysis of one-dimensional systems,’J. Comp. Phys., 93 (1991),
189–223.
[32] H. C. Andersen, ‘Molecular dynamics at constant temperature and/or pressure,’J. Chem. Phys.,
72 (1980), 2384–94.
[33] J. M. Haile and S. Gupta, ‘Extensions of molecular dynamics simulation method. II. Isothermal
systems,’J. Chem. Phys., 79 (1983), 3067–76.

Free download pdf