References 261
[34] S. Nosé, ‘A unified formulation of constant temperature molecular-dynamics methods,’J. Chem.
Phys., 81 (1984), 511–19.
[35] W. G. Hoover, A. J. C. Ladd, R. B. Hickman, and B. L. Holian, ‘Bulk viscosity via nonequilibrium
and equilibrium molecular dynamics,’Phys. Rev. A, 21 (1980), 1756–60.
[36] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. Dinola, and B. Haak, ‘Molecular
dynamics with coupling to an external bath,’J. Chem. Phys., 81 (1984), 3684–90.
[37] W. G. Hoover, ‘Canonical dynamics: equilibrium phase-space distributions,’Phys. Rev. A, 31
(1985), 1695–7.
[38] K. Cho and J. D. Joannopoulos, ‘Ergodicity and dynamical properties of constant-temperature
molecular dynamics,’Phys. Rev. A, 45 (1992), 7089–97.
[39] B. L. Holian, ‘Simulations of vibrational relaxation in dense molecular fluids,’ inMolecular
Dynamics Simulation of Statistical Mechanical systems(G. Ciccotti and W. G. Hoover, eds.),
Proceedings of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97.
Amsterdam, North-Holland, 1986, pp. 241–59.
[40] B. L. Holian, ‘Simulations of vibrational-relaxation in dense molecular fluids,’J. Chem. Phys.,
84 (1986), 3138–46.
[41] G. J. Martyna, M. L. Klein, and M. Tuckerman, ‘Nosé–Hoover chains – the canonical ensemble
via continuous dynamics,’J. Chem. Phys., 97 (1992), 2635–43.
[42] S. Nosé, ‘A molecular dynamics method for simulations in the canonical ensemble,’Mol. Phys.,
52 (1984), 255–68.
[43] R. G. Winkler, V. Kraus, and P. Reineker, ‘Time reversible and phase-space conserving molecular
dynamics at constant temperature,’J. Chem. Phys., 102 (1995), 9018–25.
[44] W. G. Hoover, ‘Constant pressure equations of motion,’Phys. Rev. A, 34 (1986), 2499–500.
[45] M. Parrinello and A. Rahman, ‘Polymorphic transitions in single crystals: a new molecular
dynamics method.,’J. Appl. Phys., 52 (1981), 7182–90.
[46] P. S. Y. Cheung and J. G. Powles, ‘The properties of liquid nitrogen. IV. A computer simulation,’
Mol. Phys., 30 (1975), 921–49.
[47] D. Fincham, ‘More on rotational motion of linear molecules,’CCP5 Quarterly, 12 (1984), 47–8.
[48] D. J. Evans, ‘On the representation of orientation space,’Mol. Phys., 34 (1977), 317–25.
[49] D. J. Evans and S. Murad, ‘Singularity-free algorithm for molecular dynamics simulation of
rigid polyatomics,’Mol. Phys., 34 (1977), 327–31.
[50] H. Goldstein,Classical Mechanics. Reading, Addison-Wesley, 1980.
[51] G. Ciccotti, M. Ferrario, and J. P. Ryckaert, ‘Molecular dynamics of rigid systems in cartesian
coordinates,’Mol. Phys., 47 (1982), 1253–64.
[52] J. P. Ryckaert, ‘The method of constraints in molecular dynamics,’ inMolecular Dynamics
Simulation of Statistical Mechanical Systems(G. Ciccotti and W. G. Hoover, eds.),Proceedings
of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97. Amsterdam,
North-Holland, 1986, pp. 329–40.
[53] J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, ‘Numerical integration of the cartesian equa-
tions of motion of a system with constraints: molecular dynamics of n-alkanes,’J. Comput.
Phys., 23 (1977), 327–41.
[54] J. P. Ryckaert, ‘Special geometrical constraints in the molecular dynamics of chain molecules,’
Mol. Phys., 55 (1985), 549–56.
[55] J.-P. Hansen, ‘Molecular dynamics simulation of Coulomb systems,’ inMolecular Dynamics
Simulation of Statistical Mechanical Systems(G. Ciccotti and W. G. Hoover, eds.),Proceedings
of the International School of Physics “Enrico Fermi”, Varenna 1985, vol. 97. Amsterdam,
North-Holland, 1986, pp. 89–119.
[56] S. W. De Leeuw, J. W. Perram, and E. R. Smith, ‘Simulation of electrostatic systems in periodic
boundary conditions. I. Lattice sums and dielectric constants,’Proc. R. Soc. London,A373
(1980), 27–56.