262 Molecular dynamics simulations
[57] J. Barnes and P. Hut, ‘A hierarchicalO(NlogN)force-calculation algorithm,’Nature, 324
(1986), 446–9.
[58] L. Hernquist, ‘Performance characteristics of tree codes,’Astrophysi. J. Suppl., 64 (1987),
715–34.
[59] A. W. Appel, ‘An efficient program for many-body simulation,’Siam. J. Sci. Stat. Comput., 6
(1985), 85–103.
[60] J. G. Jernigan, ‘DirectN-body simulations with a recursive center of mass reduction and regular-
ization,’ inDynamics of Star Clusters(J. Goodman and P. Hut, eds.)IAU Symposium, vol. 113,
Dordrecht, Reidel, 1985, pp. 275–84.
[61] L. van Dommelen and E. A. Rundensteiner, ‘Fast, adaptive summation of point forces in the
two-dimensional Poisson equation,’Siam. J. Sci. Stat. Comput., 83 (1989), 286–300.
[62] L. Greengard, ‘The numerical solution of theN-body problem,’Comp. Phys., 4 (1990), 142–52.
[63] L. Greengard,The Rapid Evaluation of Potential Fields in Particle Systems. Cambridge, MIT
Press, 1988.
[64] G. Ciccotti and J. P. Ryckaert, ‘Computer simulation of the generalized Brownian motion. I. The
scalar case,’Mol. Phys., 40 (1980), 141–9.
[65] S. Toxvaerd, ‘Solution of the generalised Langevin equation,’J. Chem. Phys., 82 (1985),
5658–62.
[66] F. J. Vesely and H. A. Posch, ‘Correlated motion of 2 particles in a fluid. 1. Stochastic equation
of motion,’Mol. Phys., 64 (1988), 97–109.
[67] L. G. Nillson and J. A. Prado, ‘A time-saving algorithm for generalised Langevin-dynamics
simulations with arbitrary memory kernels,’Mol. Phys., 71 (1990), 355–67.
[68] D. L. Ermak and J. A. McCammon, ‘Brownian dynamics with hydrodynamic interactions,’J.
Chem. Phys., 69 (1978), 1352–60.
[69] P. J. Hoogerbrugge and J. M. V. A. Koelman, ‘Simulating microscopic hydrodynamic phenomena
with dissipative particle dynamics,’Europhys. Lett., 19 (1992), 155–60.
[70] W. F. van Gunsteren and H. J. C. Berendsen, ‘Algorithms for Brownian dynamics,’Mol. Phys.,
45 (1982), 637–47.
[71] R. Kubo, H. Ichimura, and T. Usui,Statistical Mechanics, An Advanced Course. Amsterdam,
North-Holland, 1965.
[72] M. Plischke and H. Bergersen,Equilibrium Statistical Physics. Englewood Cliffs, NJ, Prentice-
Hall, 1989.
[73] E. M. Gosling, I. R. McDonald, and K. Singer, ‘On the calculation by molecular dynamics of
the shear viscosity,’Mol. Phys., 26 (1973), 1475–84.
[74] G. Ciccotti and G. Jacucci, ‘Direct computation of dynamical response by molecular dynamics:
the mobility of a charged Lennard–Jones particle,’Phys. Rev. Lett., 35 (1975), 789–92.