Computational Physics

(Rick Simeone) #1
References 421

References


[1] P. A. M. Dirac,The Principles of Quantum Mechanics. Oxford, Oxford University Press, 1958.
[2] B. L. Hammond, W. A. Lester Jr, and P. J. Reynolds,Monte Carlo Methods in Ab Initio Quantum
Chemistry. Singapore, World Scientific, 1994.
[3] D. M. Ceperley and E. L. Pollock, ‘Path-integral computation of the low-temperature properties
of liquid-He-4,’Phys. Rev. Lett., 56 (1986), 351–4.
[4] D. M. Ceperley, ‘Path integrals in the theory of condensed helium,’Rev. Mod. Phys., 67 (1995),
279–355.
[5] H. De Raedt and A. Lagendijk, ‘Monte Carlo simulations of quantum statistical lattice models,’
Phys. Rep., 127 (1985), 233–307.
[6] A. Harju, S. Siljamäki, and R. M. Nieminen, ‘Wigner molecules in quantum dots: a quantum
Monte Carlo study,’Phys. Rev. E, 65 (2002), 075309.
[7] R. J. Jastrow, ‘Many-body problem with strong forces,’Phys. Rev., 98 (1955), 1479–84.
[8] M. H. Kalos, D. Levesque, and L. Verlet, ‘Helium at zero temperature with hard-sphere and
other forces,’Phys. Rev. A, 9 (1974), 2178–95.
[9] R. N. Barnett, P. J. Reynolds, and W. A. Lester Jr, ‘Monte Carlo determination of the oscillator
strength and excited state lifetime for the Li 2^2 S→ 22 Ptransition,’Int. J. Quantum Chem., 42
(1992), 837–47.
[10] R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals. New York, McGraw-
Hill, 1965.
[11] M. Suzuki, ‘Decomposition formulas of exponential operators and Lie exponents with some
applications to quantum-mechanics and statistical physics,’J. Math. Phys., 26 (1985), 601–12.
[12] M. Suzuki, ‘Transfer-matrix method and Monte Carlo simulation in quantum spin systems,’
Phys. Rev. B, 31 (1985), 2957–65.
[13] J. D. Doll, R. D. Coalson, and D. L. Freeman, ‘Towards a Monte Carlo theory of quantum
dynamics,’J. Chem. Phys., 87 (1987), 1641–7.
[14] V. S. Filinov, ‘Calculation of the Feynman integrals by means of the Monte Carlo method,’Nucl.
Phys. B, 271 (1986), 717–25.
[15] J. Chang and W. H. Miller, ‘Monte Carlo path integration in real-time via complex coordinates,’
J. Chem. Phys., 87 (1987), 1648–52.
[16] R. P. Feynman, ‘Theλ-transition in liquid helium,’Phys. Rev., 90 (1953), 1116–17.
[17] R. P. Feynman, ‘Atomic theory of theλ-transition in helium,’Phys. Rev., 91 (1953), 1291–301.
[18] R. P. Feynman, ‘Atomic theory of liquid helium near absolute zero,’Phys. Rev., 91 (1953),
1301–8.
[19] D. M. Ceperley and E. L. Pollock, ‘Path-integral computation techniques for superfluid^4 He,’ in
Monte Carlo Methods in Theoretical Physics(S. Caracciolo and A. Fabrocini, eds.). Pisa, Italy,
ETS Editrice, 1992, p. 35.
[20] M. F. Herman, E. J. Bruskin, and B. J. Berne, ‘On path integral Monte-Carlo simulations,’
J. Chem. Phys., 76 (1982), 5150–5.
[21] K. Singer and W. Smith, ‘Path integral simulation of condensed phase Lennard–Jones systems,’
Mol. Phys., 64 (1988), 1215–31.
[22] D. M. Ceperley, ‘The simulation of quantum systems with random walks–anewalgorithm for
charged systems,’J. Comp. Phys., 51 (1983), 404–22.
[23] E. L. Pollock, ‘Properties and computation of the Coulomb pair density matrix,’Comp. Phys.
Comm., 52 (1989), 49–60.
[24] M. Takahashi and M. Imada, ‘Monte Carlo calculation of quantum-systems,’J. Phys. Soc. Jpn,
53 (1984), 963–74.
[25] J. D. Doll, R. D. Coalson, and D. L. Freeman, ‘Solid-fluid phase transition of quantum hard-
spheres at finite temperatures,’Phys. Rev. Lett., 55 (1985), 1–4.

Free download pdf