Computational Physics

(Rick Simeone) #1

422 Quantum Monte Carlo methods


[26] M. Plischke and H. Bergersen,Equilibrium Statistical Physics. Englewood Cliffs, NJ, Prentice-
Hall, 1989.
[27] J. E. Hirsch, ‘Discrete Hubbard–Stratonovich transformation for fermion lattice models,’Phys.
Rev. B, 28 (1983), 4059–61.
[28] J. W. Negele and H. Orland,Quantum Many-Particle Systems. Redwood City, Addison-Wesley,
1988.
[29] D. B. F. ten Haaf, H. J. M. van Bemmel, J. M. J. van Leeuwen, W. van Saarloos, and D. M.
Ceperley, ‘Proof for an upper bound in fixed-node Monte Carlo for lattice fermions,’Phys. Rev.
B, 51 (1995), 13039–45.
[30] M. P. Nightingale and H. W. J. Blöte, ‘Monte Carlo calculation for the free energy, critical point
and surface critical behaviour of three-dimensional Heisenberg ferromagnets,’Phys. Rev. Lett.,
60 (1988), 1562–5.
[31] N. G. van Kampen,Stochastic Processes in Physics and Chemistry. Amsterdam, North-Holland,
1981.

Free download pdf