10.4Two-Factor Analysis of Variance: Introduction and Parameter Estimation 455
However, if we letμdenote the average value of theμi— that is,
μ=∑mi= 1μi/mthen we can rewrite the model as
E[Xij]=μ+αiwhereαi =μi−μ. With this definition ofαias the deviation ofμifrom the average
mean value, it is easy to see that
∑m
i= 1αi= 0Atwo-factoradditivemodelcanalsobeexpressedintermsofrowandcolumndeviations.
If we letμij=E[Xij], then the additive model supposes that for some constantsai,i=
1,...,mandbj,j=1,...,n
μij=ai+bjContinuing our use of the “dot” (oraveraging) notation, we let
μi.=∑nj= 1μij/n, μ.j=∑mi= 1μij/m, μ..=∑mi= 1∑nj= 1μij/nmAlso, we let
a.=∑mi= 1ai/m, b.=∑nj= 1bj/nNote that
μi.=∑nj= 1(ai+bj)/n=ai+b.Similarly,
μ.j=a.+bj, μ..=a.+b.If we now set
μ=μ..=a.+b.
αi=μi.−μ=ai−a.
βj=μ.j−μ=bj−b.then the model can be written as
μij=E[Xij]=μ+αi+βj