456 Chapter 10:Analysis of Variance
where
∑mi= 1αi=∑nj= 1βj= 0The valueμis called thegrand mean,αiis thedeviation from the grand mean due to row i,
andβjis thedeviation from the grand mean due to column j.
Let us now determine estimators of the parametersμ,αi,βj,i=1,...,m,j=1,...,n.
To do so, continuing our use of “dot” notation, we let
Xi.=∑nj= 1Xij/n=average of the values in rowiX.j=∑mi= 1Xij/m=average of the values in columnjX..=∑mi= 1∑nj= 1Xij/nm=average of all data valuesNow,
E[Xi.]=∑nj= 1E[Xij]/n=μ+∑nj= 1αi/n+∑nj= 1βj/n=μ+αi since∑nj= 1βj= 0Similarly, it follows that
E[X.j]=μ+βj
E[X..]=μBecause the preceding is equivalent to
E[X..]=μ
E[Xi.−X..]=αi
E[X.j−X..]=βj