164 3 Quantum Mechanics – II
The first term on the RHS is zero at both the limits.−
∫
∂^2 ψ∗
∂x^2xψdx=−∫
dψ∗
dx(
ψ+xdψ
dx)
dx=ψdψ∗
dxdx+∫
x(
dψ∗
dx)(
dψ
dx)
dx (8)Substituting (7) and (8) in (5), the terms underlined vanish together.d<x>
dt=
(
i
2 m)(
−
∫
ψ∗∂
∂xdx+∫
ψdψ∗
dxdx)
=
1
2 m(∫
ψ∗(
−i∂
∂x)
ψdx+∫
ψ(
i∂
∂x)
ψ∗dx)
(9)
Now the operator forPxis−i∂∂x. The first term on RHS of (9) is the
average value of the momentumPx, the second term must represent the
average value ofPx∗.Butpxbeing real,Px∗=Px. Therefored<x>
dt=
1
m<Px> (10)Thus (10) is similar to classical equationx=p/m
Equation (10) can be interpreted by saying that if the “position” and
“momentum” vectors of a wave packet are regarded as the average or
expectation values of these quantities, then the classical and quantum
motions will agree.(b)d<Px>
dt=
d
dt∫
ψ∗(
−i∂
∂x)
ψdτ=−id
dt∫
ψ∗∂ψ
∂xdτ=−i∫
dψ∗
dt∂ψ
∂xdτ+∫
ψ∗∂
∂x∂ψ
∂tdτ (11)Nowi∂ψ
∂t=−
(
^2
2 m)
∇^2 ψ+Vψ−
i∂ψ∗
∂t=−
(
^2
2 m)
∇^2 ψ∗+Vψ∗ (12)Using (12) in (11)d
dt<Px>=−∫
ψ∗∂
∂x(
−
(
^2
2 m)
∇^2 ψ+Vψ)
dτ+
∫ ((
−
^2
2 m)
∇^2 ψ+Vψ)
∂ψ
∂xdτ