3.3 Solutions 165
Integrating by parts twiced
dt<Px>=−∫
ψ∗[
∂
∂x(Vψ)−V∂ψ
∂x]
dτ=−
∫
ψ∗∂V
∂xψdτ=<−∂V
∂x>
These two examples support the correspondence principle as they show
that the wave packet moves like a classical particle provided the expecta-
tion value gives a good representation of the classical variable.3.15 (a) Using the Laplacian in the time-independent Schrodinger equation−
^2
2 m[
1
r^2∂
∂r(
r^2∂
∂r)
+
1
r^2 sinθ(
∂
∂θ(
sinθ∂
∂θ)
+
1
r^2 sin^2 θ∂^2
∂φ^2)]
ψ(r,θ,φ)+V(r)ψ(r,θ,φ)=Eψ(r,θ,φ)(1)We solve this equation by method of separation of variablesLetψ(r,θ,φ)=ψr(r)Y(θ,φ)(2)Use (2) in (1) and multiply by(
−^2 m 2 .r^2)
/ψr(r)Y(θ,φ) and rearrange1
ψr(r)d
dr(
r^2 dψr(r)/dr)
+
2 mr^2
^2[E−V(r)]=−
1
Y
(θ,φ)[
1
sinθ∂
∂θ(
sinθ∂
∂θ(sinθ∂Y(θ,φ)/∂θ)+1
sin^2 θ∂^2 Y(θ,φ)/∂φ^2)]
(3)
It is assumed thatV(r) depends only onr.
L.H.S. is a function of r only and R.H.S is a function ofθandφonly.
Then each side must be equal to a constant, sayλ.1
sinθ∂
∂θ(
sinθ∂Y
∂θ(
θ,φ)
)
+
1
sin^2 θ∂^2 Y
∂φ^2(
θ,φ)
+λY(θ,φ)=0(4)The radial equation isd
drr^2dψr(r)
dr+
2 mr^2
^2[E−V(r)−λ]ψr(r)=0(5)(b) The angular equation (4) can be further separated by substituting
Y(θ,φ)=f(θ)g(θ)(6)