662 SIGNAL PROCESSINGx(t)x(t)T
− 4
T
− 2
T
4T
2(a) (b)−Te−tTt
2 T1−T Tt1− 1x(t)(c)t122 T
3Tx(t)(d)T
3t1T
− 4
−T
− 2
T
4T
2x(t)(e)t11
T
32−TT^2 T −
− 3
T
32 T
3x(t)(f)t1Figure P14.1.14(b) Using the result of Figure E14.1.4(a), find
the Fourier coefficients ofv(t).*14.1.18The waveforms of Figure E14.1.4(b) and (c) are
given to haveA=πandT= 0 .2 ms.
(a) For 0≤f≤30 kHz, sketch and label the
amplitude spectra.
(b) ForAn<A 1 /5 for allnf 1 <W(whereA
stands for amplitude), determine the value of
Win each case.
14.1.19Consider Figure 14.1.5, withx(t)=3 cos 2πt
+cos(2π 3 t+180°),|H(f)|=1, and constant
phase shiftθ(f)=−90°. Sketchx(t) andy(t).14.1.20The frequency response of a transmission system
is given by
|H(f)|=
1
√
1 +(f/fco)^2;θ(f)=−tan−^1
f
fco
wherefco=ωco/ 2 π=5 kHz. In order to satisfy
Equation (14.1.20), over the range of 0≤f≤