0195136047.pdf

(Joyce) #1

840 APPENDIX D


D.3 DERIVATIVES AND INTEGRALS


Derivatives:
d
dx

(a)= 0 ,whereais a fixed real number

d
dx

(x)= 1

d
dx

(au)=a

du
dx

,whereuis a function ofx
d
dx

(u±v)=

du
dx

±

dv
dx

,whereuandvare functions ofx

d
dx

(uv)=u

dv
dx

+v

du
dx
d
dx

(

u
v

)=

vdudx−udvdx
v^2

=

1
v

du
dx


u
v^2

dv
dx
d
dx

(un)=nun−^1

du
dx
d
dx

[f (u)]=

d
du

[f (u)]·

du
dx
d
dx

(lnu)=

1
u

du
dx

;

d
dx

(lnx)=

1
x
d
dx

(loga u)=(logae)

1
u

du
dx
d
dx

(eu)=eu

du
dx

;

d
dx

eax=aeax

d
dx

(sinu)=

du
dx

(cosu);

d
dx

sinax=acosax

d
dx

(cosu)=−

du
dx

(sinu);

d
dx

cosax=−asinax

Integrals:

(a+bx)ndx=

(a+bx)n+^1
(n+ 1 )b

,n=− 1

dx
a+bx

=

1
b

ln|a+bx|

dx
a^2 +b^2 x^2

=

1
ab

tan−^1

bx

∫ a
xdx
a^2 +x^2

=

1
2

ln(a^2 +x^2 )

x^2 dx
a^2 +x^2

=x−atan−^1

x

∫ a
dx
(a^2 +x^2 )^2

=

x
2 a^2 (a^2 +x^2 )

+

1
2 a^3

tan−^1

x

∫ a
xdx
(a^2 +x^2 )^2

=

− 1
2 (a^2 +x^2 )
Free download pdf