842 APPENDIX D
D.4 SERIES EXPANSIONS AND FINITE SERIES
( 1 ±x)n= 1 ±nx+
n(n− 1 )
2!
x^2 ±
n(n− 1 )(n− 2 )
3!
x^3 ±... (x^2 < 1 )Binomial
( 1 ±x)−n= 1 ∓nx+
n(n− 1 )
2!
x^2 ∓
n(n+ 1 )(n+ 2 )
3!
x^3 ∓... (x^2 < 1 )Binomial
ex= 1 +x+
1
2!
x^2 +... (all real values ofx)Exponential
sinx=x−
1
3!
x^3 +
1
5!
x^5 −... (all real values ofx)Trigonometric
cosx= 1 −
1
2!
x^2 +
1
4!
x^4 −... (all real values ofx)Trigonometric
f(x)=f(a)+(x−a)f′(a)+
(x−a)^2
2!
f′′(a)+
(x−a)^3
3!
f′′′(a)+...Taylor
f(x+h)=f(x)+hf′(x)+
h^2
2!
f′′(x)+
h^3
3!
f′′′(x)+...
=f (h)+xf′(h)+
x^2
2!
f′′(h)+
x^3
3!
f′′′(h)+...
Taylor
Finite Series:
∑N
n= 1
n=
N(N+ 1 )
2
∑N
n= 1
n^2 =
N(N+ 1 )( 2 N+ 1 )
6
∑N
n= 1
n^3 =
N^2 (N+ 1 )^2
4
∑N
n= 0
xn=
xN+^1 − 1
x− 1
∑N
n= 0
ej(θ+nφ)=
sin [(N+ 1 )φ/2]
sin(φ/ 2 )
ej[θ+(N φ/^2 )]