0195136047.pdf

(Joyce) #1

842 APPENDIX D


D.4 SERIES EXPANSIONS AND FINITE SERIES


( 1 ±x)n= 1 ±nx+

n(n− 1 )
2!

x^2 ±

n(n− 1 )(n− 2 )
3!

x^3 ±... (x^2 < 1 )Binomial

( 1 ±x)−n= 1 ∓nx+

n(n− 1 )
2!

x^2 ∓

n(n+ 1 )(n+ 2 )
3!

x^3 ∓... (x^2 < 1 )Binomial

ex= 1 +x+

1
2!

x^2 +... (all real values ofx)Exponential

sinx=x−

1
3!

x^3 +

1
5!

x^5 −... (all real values ofx)Trigonometric

cosx= 1 −

1
2!

x^2 +

1
4!

x^4 −... (all real values ofx)Trigonometric

f(x)=f(a)+(x−a)f′(a)+

(x−a)^2
2!

f′′(a)+

(x−a)^3
3!

f′′′(a)+...Taylor

f(x+h)=f(x)+hf′(x)+

h^2
2!

f′′(x)+

h^3
3!

f′′′(x)+...

=f (h)+xf′(h)+

x^2
2!

f′′(h)+

x^3
3!

f′′′(h)+...

Taylor

Finite Series:
∑N

n= 1

n=

N(N+ 1 )
2
∑N

n= 1

n^2 =

N(N+ 1 )( 2 N+ 1 )
6
∑N

n= 1

n^3 =

N^2 (N+ 1 )^2
4
∑N

n= 0

xn=

xN+^1 − 1
x− 1
∑N

n= 0

ej(θ+nφ)=

sin [(N+ 1 )φ/2]
sin(φ/ 2 )

ej[θ+(N φ/^2 )]
Free download pdf