Solutions 221(b) Let us take the first three columns of A 2 as the basis:B"2 13"
1 32
32 1, N ="10"
01
_10_, XBXi
X2
Xi, XN =X4
X 5Let XN — 0. Then, BXB — b 2 is solved by LU decomposition as above:
"2
Lc = b 2 & k 10 c 2 = 19 & < => c 2 = 18
ci = 3r
2- 1
ii
3 7 L
3 10
1 00_
Cl"
C2
.C3._" 8"
19
3=*> C3 — y-£/x = c<£>"321"
0 1 s U
3 3(^00) T
Xi
«2
Xz
3"
18
60
. 7.
=> Xl = --
<=>
^3^10 3X 2 = f
XS =
XJV = [1,1]11 16 10]T
3 ' 3 ' 3 J •
"T Then,If XJV ^ 6, then x# = [• -j±,f,f]T -B^NXN. Let
xBXl
X2
.X3.=- 11 •
3
16
3
10
_5_
18
_7_
18
_i_
181
L J^11
_ 6"-23"
31
19_
Final check:A 2 x =A 2 x =2 13 10
13201
32 1102 1310
1320 1
32 110- 11 •
3
16
3
10
3
0
0_
=8"
19
3/-23
31
19
6
619
3/(c)A* =" 1
4
72"
5
8
.10 11.J A 3147 10
258 11AJA 3 =
166 188
188 214A^A^ is clearly invertible, and (A3A3) l =
107
90
_47
4547
"45
83
90