230 SolutionsProblems of Chapter 5
5.1
Proof. Let Q~lAQ = A and Q~l = QT,yTAy Xiyf + • • • + XnVl
x = Qy => R(x) =yTy vi + '-' + vl
2/1 = 1,2/2 = • • • = yn = 0 => Ai < i?(x) sinceAi(2/f + ' •' + Vl) < Aiy? + •' • + A„2/£ «= Ai = min {AJf=1.Similarly, A„(A) — max||x||=i xTAx. D5.2i. xTAx > 0, Vx ^ 0;xr.4x = [xix 2 x 3 ] ——
100"2 10'
12 1
01 1Xi
^2
.X3.— [2x1 + xix2 + xxx 2 + 2x2 + ^2X3 + x 2 x 3 + X3]
100-^ [(xi + x 2 f + (x 2 + x 3 )^2 + xi] > 0, Vx ^ 6\ii. All the eigen values of A satisfy A, > 0;det(,I-A) = —100s - 2 -1 0
-1 100s-2 -1
0 -1 100s - 1= 0<£>s^3 -0.05s^2 +0.0006s-0.000001 = (s-0.002)(s-0.01552)(s-0.03248) = 0
=> Ai = 0.002 > 0, A 2 = 0.01552 > 0, A 3 = 0.03248 > 0!iii. All the submatrices Ak have nonnegative determinants;
Since each entry of A is nonnegative, all 1 x 1 minors are OK.
= 1>0= 1 >0= 2>02 1
1 22 1
01
12
01= 3>0,= 2>0,= 1>0,20
1 120
011 1
01= 2>0,= 2>0,= 1 >0,10
2110
1 1
2 1
1 1
All 2 x 2 minors are OK.