84 6 Computational AspectsDefinition 6.1.7 The norm of A is the number defined \\A\\ = xnaxx^o |d!fRemark 6.1.8 ||.A|| bounds the "amplifying power" of the matrix.\\Ax\\ < \\A\\ \\x\\, Vz;and equality holds for at least one nonzero x. It measures the largest amount
by which any vector (eigen vector or not) is amplified by matrix multiplication.Proposition 6.1.9 For a square nonsingular matrix, the solution x = A~^1 b
and the error Ax = A~^1 Ab satisfyJ!M<M||.u-i||JJM.
Proof. Since
b=Ax=> \\b\\ < \\A\\\\x\\ and
Ax = A-xAb =$> \\AX =|| < ||^_1|| ||A>||, we haveH&HPHIWI and II^Hl^-
1!!!!^
Remark 6.1.10 When A is symmetric,W = |A„I, ii^-
1^ J-|=>c:
DlAllIU-^1 !^
|Ai|and the relative error satisfies\AX\\ K \\Ab["1 K
0 1
,b =
K
1 , A» =0"
-1Example 6.1.11 Let us continue the previous example, where
A =Since we have
«<||^||<«+1, and K < \\A~*\\ < K+ 1,then the relative amplification is approximately K^2 « ||.A|| ||A_1|
Remark 6.1.12
ll2 \\Ax\\(^2) xTATAx
\A\' = max
M
= max • : Rayleigh quotient!