4.5 Centrosymmetric Determinants 87=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
a 1 +a 5 a 2 +a 4 2 a 3 ••b 1 +b 5 b 2 +b 4 2 b 3 ••c 1 c 2 c 3 ••b 5 b 4 b 3 b 2 −b 4 b 1 −b 5a 5 a 4 a 3 a 2 −a 4 a 1 −a 5∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ =
∣ ∣ ∣ ∣ ∣ ∣
a 1 +a 5 a 2 +a 4 2 a 3b 1 +b 5 b 2 +b 4 2 b 3c 1 c 2 c 3∣ ∣ ∣ ∣ ∣ ∣
∣
∣
∣
∣
b 2 −b 4 b 1 −b 5a 2 −a 4 a 1 −a 5∣
∣
∣
∣
=
1
2|E||F|, (4.5.5)
where
E=
a 1 a 2 a 3b 1 b 2 b 3c 1 c 2 c 3
+
a 5 a 4 a 3b 5 b 4 b 3c 1 c 2 c 3
,
F=
[
b 2 b 1a 2 a 1]
−
[
b 4 b 5a 4 a 5]
. (4.5.6)
Two of these matrices are submatrices ofA 5. The other two are submatrices
with their rows or columns arranged in reverse order.
Exercise.If a determinantAnis symmetric about its principal diagonal
and persymmetric (Hankel, Section 4.8) about its secondary diagonal, prove
analytically thatAnis centrosymmetric.
4.5.2 Symmetric Toeplitz Determinants..........
The classical Toeplitz determinantAnis defined as follows:
An=|ai−j|n=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
a 0 a− 1 a− 2 a− 3 ··· a−(n−1)a 1 a 0 a− 1 a− 2 ··· ···a 2 a 1 a 0 a− 1 ··· ···a 3 a 2 a 1 a 0 ··· ······ ··· ··· ··· ··· ···an− 1 ··· ··· ··· ··· a 0∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n.
The symmetric Toeplitz determinantTnis defined as follows:
Tn=|t|i−j||n=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣
t 0 t 1 t 2 t 3 ··· tn− 1t 1 t 0 t 1 t 2 ··· ···t 2 t 1 t 0 t 1 ··· ···t 3 t 2 t 1 t 0 ··· ······ ··· ··· ··· ··· ···tn− 1 ··· ··· ··· ··· t 0∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ n