88 4. Particular Determinants
which is centrosymmetric and can therefore be expressed as the prod-
uct of two determinants of lower order. Tn is also persymmetric about
its secondary diagonal.
LetAn,Bn, andEndenote Hankel matrices defined as follows:An=[
ti+j− 2]
n,
Bn=[
ti+j− 1]
n,
En=[
ti+j]
n. (4.5.8)
Then, the factors ofTncan be expressed as follows:
T 2 n− 1 =1
2
|Tn− 1 −En− 1 ||Tn+An|,T 2 n=|Tn+Bn||Tn−Bn|. (4.5.9)Let
Pn=1
2
|Tn−En|=1
2
|t|i−j|−ti+j|n,Qn=1
2
|Tn+An|=1
2
|t|i−j|+ti+j− 2 |n,Rn=1
2
|Tn+Bn|=1
2
|t|i−j|+ti+j− 1 |n,Sn=1
2
|Tn−Bn|=1
2
|t|i−j|−ti+j− 1 |n, (4.5.10)Un=Rn+Sn,Vn=Rn−Sn. (4.5.11)Then,
T 2 n− 1 =2Pn− 1 Qn,T 2 n=4RnSn=U
2
n−V
2
n. (4.5.12)
Theorem.
a.T 2 n− 1 =Un− 1 Un−Vn− 1 Vn,b.T 2 n=PnQn+Pn− 1 Qn+1.
Proof. Applying the Jacobi identity (Section 3.6),
∣
∣
∣
∣T
(n)
11T
(n)
1 nT(n)
n 1T
(n)
nn∣
∣
∣
∣
=TnT(n)
1 n, 1 n.
But
T
(n)
11=T
(n)
nn
=Tn− 1 ,T
(n)
n 1=T
(n)
1 n,
T
(n)
1 n, 1 n
=Tn− 2.Hence,
T
2
n− 1
=TnTn− 2 +(
T
(n)
1 n